
 

1 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

[MS-DISO]:  
Domain Interactions System Overview 

 

Intellectual Property Rights Notice for Open Specifications Documentation 

 Technical Documentation. Microsoft publishes Open Specifications documentation for 

protocols, file formats, languages, standards as well as overviews of the interaction among each 
of these technologies.  

 Copyrights. This documentation is covered by Microsoft copyrights. Regardless of any other 
terms that are contained in the terms of use for the Microsoft website that hosts this 

documentation, you may make copies of it in order to develop implementations of the 
technologies described in the Open Specifications and may distribute portions of it in your 
implementations using these technologies or your documentation as necessary to properly 

document the implementation. You may also distribute in your implementation, with or without 
modification, any schema, IDL’s, or code samples that are included in the documentation. This 
permission also applies to any documents that are referenced in the Open Specifications.  

 No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation. 

 Patents. Microsoft has patents that may cover your implementations of the technologies 
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the 
documentation grants any licenses under those or any other Microsoft patents. However, a given 

Open Specification may be covered by Microsoft Open Specification Promise or the Community 
Promise. If you would prefer a written license, or if the technologies described in the Open 
Specifications are not covered by the Open Specifications Promise or Community Promise, as 

applicable, patent licenses are available by contacting iplg@microsoft.com. 

 Trademarks. The names of companies and products contained in this documentation may be 
covered by trademarks or similar intellectual property rights. This notice does not grant any 

licenses under those rights. For a list of Microsoft trademarks, visit 
www.microsoft.com/trademarks. 

 Fictitious Names. The example companies, organizations, products, domain names, email 
addresses, logos, people, places, and events depicted in this documentation are fictitious.  No 
association with any real company, organization, product, domain name, email address, logo, 
person, place, or event is intended or should be inferred. 

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights 

other than specifically described above, whether by implication, estoppel, or otherwise. 

Tools. The Open Specifications do not require the use of Microsoft programming tools or 

programming environments in order for you to develop an implementation. If you have access to 
Microsoft programming tools and environments you are free to take advantage of them. Certain 
Open Specifications are intended for use in conjunction with publicly available standard 
specifications and network programming art, and assumes that the reader either is familiar with the 
aforementioned material or has immediate access to it. 

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com
http://www.microsoft.com/trademarks


 

2 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

This document provides an overview of the Domain Interactions System Overview Protocol Family. 
It is intended for use in conjunction with the Microsoft Protocol Technical Documents, publicly 
available standard specifications, network programming art, and Microsoft Windows distributed 
systems concepts. It assumes that the reader is either familiar with the aforementioned material or 

has immediate access to it. 

A Protocol Family System Document does not require the use of Microsoft programming tools or 
programming environments in order to implement the Protocols in the System. Developers who 
have access to Microsoft programming tools and environments are free to take advantage of them. 

Abstract 

Microsoft Windows networks are often configured with a domain controller providing centralized 
storage of accounts and administration of many computers. Many network related operations 

depend on domains in order to complete various tasks. The Domain Interactions System includes 
the most common domain interaction tasks such as locating a domain controller, joining a domain, 

and removing a domain member.This document specifies how the protocols that comprise the 
offerings from Microsoft are used together to maintain a relationship with the domain. This includes 
protocols that are used to communicate with a domain controller and maintain state, protocols that 
are used to augment authentication and authorization actions, and protocols that are used to 

interact with domain controllers. 

Revision Summary 

Date 

Revision 

History 

Revision 

Class Comments 

11/06/2009 0.1 Major First Release. 

12/18/2009 1.0 Major Updated and revised the technical content. 

01/29/2010 2.0 Major Updated and revised the technical content. 

03/12/2010 3.0 Major Updated and revised the technical content. 

04/23/2010 4.0 Major Updated and revised the technical content. 

06/04/2010 5.0 Major Updated and revised the technical content. 

07/16/2010 6.0 Major Significantly changed the technical content. 

08/27/2010 7.0 Major Significantly changed the technical content. 

10/08/2010 8.0 Major Significantly changed the technical content. 

11/19/2010 9.0 Major Significantly changed the technical content. 

01/07/2011 10.0 Major Significantly changed the technical content. 

02/11/2011 11.0 Major Significantly changed the technical content. 

03/25/2011 12.0 Major Significantly changed the technical content. 

05/06/2011 13.0 Major Significantly changed the technical content. 



 

3 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Date 

Revision 

History 

Revision 

Class Comments 

06/17/2011 13.1 Minor Clarified the meaning of the technical content. 

09/23/2011 14.0 Major Significantly changed the technical content. 

12/16/2011 14.0 No change No changes to the meaning, language, or formatting of 

the technical content. 

03/30/2012 14.0 No change No changes to the meaning, language, or formatting of 

the technical content. 

07/12/2012 14.1 Minor Clarified the meaning of the technical content. 

10/25/2012 14.1 No change No changes to the meaning, language, or formatting of 

the technical content. 

01/31/2013 14.1 No change No changes to the meaning, language, or formatting of 

the technical content. 

08/08/2013 15.0 Major Significantly changed the technical content. 

11/14/2013 15.0 No change No changes to the meaning, language, or formatting of 

the technical content. 

02/13/2014 15.0 No change No changes to the meaning, language, or formatting of 

the technical content. 

05/15/2014 15.0 No change No changes to the meaning, language, or formatting of 

the technical content. 

 



 

4 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Contents 

1   Introduction ........................................................................................................... 10 
1.1   Glossary ............................................................................................................. 11 
1.2   References .......................................................................................................... 13 

1.2.1   Normative References ..................................................................................... 13 
1.2.2   Informative References ................................................................................... 15 

2   Overview ................................................................................................................ 16 
2.1   Summary ........................................................................................................... 16 
2.2   List of Tasks ........................................................................................................ 16 
2.3   Relevant Standards .............................................................................................. 17 

3   Background Knowledge and System-Specific Concepts .......................................... 18 
3.1   Domains ............................................................................................................. 18 

3.1.1   NT-4.0 Style Domain ...................................................................................... 20 
3.1.2   AD-Style Domain ............................................................................................ 20 
3.1.3   Domain Naming ............................................................................................. 20 
3.1.4   Local and Remote Domains.............................................................................. 20 

3.1.4.1   Local Domains .......................................................................................... 21 
3.1.4.2   Remote Domains and Domain Controllers .................................................... 21 
3.1.4.3   Domain Membership ................................................................................. 21 
3.1.4.4   Effect on Accounts .................................................................................... 22 

3.2   Domain Controllers .............................................................................................. 22 
3.2.1   Writable Domain Controller .............................................................................. 22 
3.2.2   Read-Only Domain Controller ........................................................................... 22 

3.3   Accounts............................................................................................................. 22 
3.3.1   Account Types ............................................................................................... 23 
3.3.2   Account Names .............................................................................................. 23 

3.4   Domain Services .................................................................................................. 24 
3.5   Domains and Forests ............................................................................................ 24 

4   Common Task Information ..................................................................................... 26 
4.1   System Context ................................................................................................... 26 

4.1.1   System Environment ...................................................................................... 26 
4.1.2   System Assumptions and Preconditions ............................................................. 26 

4.1.2.1   Client ...................................................................................................... 26 
4.1.2.2   Domain Controller Server .......................................................................... 26 

4.2   Common System Relationships .............................................................................. 27 
4.2.1   Black Box Relationship Diagrams ...................................................................... 27 
4.2.2   Common System Dependencies ....................................................................... 28 
4.2.3   Common System Influences ............................................................................ 28 

4.3   Common System Architecture ............................................................................... 29 
4.3.1   Common Abstract Data Model .......................................................................... 29 

4.3.1.1   Client Data Model ..................................................................................... 30 
4.3.1.2   Interaction with the [MS-LSAD] Data Model ................................................. 31 

4.3.2   Domain Join State .......................................................................................... 31 
4.4   Overview of the Interactions in the System ............................................................. 32 
4.5   Common Relationships in Domain Client Workstation and Server Roles ...................... 33 

4.5.1   Workstation to Domain Controller ..................................................................... 34 
4.5.2   Server to Domain Controller ............................................................................ 35 
4.5.3   Domain Controller and Domain Client Functional Relationships ............................. 37 



 

5 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

4.5.3.1   Domain Controllers ................................................................................... 37 
4.5.3.1.1   Management Services .......................................................................... 37 
4.5.3.1.2   Identity, Authentication, and Authorization ............................................. 38 
4.5.3.1.3   Support Services ................................................................................. 40 
4.5.3.1.4   Remote File Services ........................................................................... 40 

4.5.3.2   Domain Client .......................................................................................... 40 
4.6   Common Architectural Details ............................................................................... 41 
4.7   Architectural Details ............................................................................................. 41 

4.7.1   Domain Client Architecture .............................................................................. 41 
4.7.1.1   Locator .................................................................................................... 42 
4.7.1.2   Time Service ............................................................................................ 43 
4.7.1.3   Authentication .......................................................................................... 43 

4.7.2   Domain Controller Architecture ........................................................................ 43 
4.8   Common Failure Scenarios .................................................................................... 44 

5   Locating a Domain Controller ................................................................................. 45 
5.1   Task Overview ..................................................................................................... 45 

5.1.1   Task Purpose ................................................................................................. 45 
5.1.2   Task Applicability ........................................................................................... 45 
5.1.3   Task Use Cases .............................................................................................. 45 

5.1.3.1   Stakeholders and Interests Summary .......................................................... 45 
5.1.3.2   Supporting Actors and Task Interests Summary ........................................... 45 
5.1.3.3   Use Case Diagrams ................................................................................... 46 
5.1.3.4   Locating a Domain Controller — Client Application ........................................ 46 

5.2   Task Context ....................................................................................................... 47 
5.2.1   Task Environment .......................................................................................... 47 
5.2.2   Task Relationships .......................................................................................... 48 

5.2.2.1   Black Box Relationship Diagrams ................................................................ 48 
5.2.2.2   Task Dependencies ................................................................................... 48 
5.2.2.3   Task Influences ........................................................................................ 48 

5.2.3   Task Assumptions and Preconditions ................................................................. 48 
5.2.4   Task Versioning and Capability Negotiation ........................................................ 49 

5.3   Task Architecture ................................................................................................. 49 
5.3.1   Task Architectural Constraints .......................................................................... 49 
5.3.2   Task Abstract Data Model ................................................................................ 49 
5.3.3   Task Abstract Parameters ................................................................................ 49 
5.3.4   Task Abstract Results...................................................................................... 50 
5.3.5   White-Box Relationships .................................................................................. 51 
5.3.6   Task Events ................................................................................................... 52 

5.3.6.1   Task Timers ............................................................................................. 52 
5.3.6.2   Task Non-Timer Events ............................................................................. 52 

5.3.7   Task Architecture and Communication .............................................................. 52 
5.3.8   Task Processing Rules ..................................................................................... 53 
5.3.9   Task Failure Scenarios .................................................................................... 54 

5.4   Task Details ........................................................................................................ 54 
5.4.1   Task Precondition Details ................................................................................ 55 
5.4.2   Task Initialization of External Entities ................................................................ 55 
5.4.3   Task Event Details .......................................................................................... 55 

5.4.3.1   Task Timer Details .................................................................................... 55 
5.4.3.2   Task Non-Timer Event Details .................................................................... 55 

5.4.4   Task Architectural Details ................................................................................ 55 
5.4.4.1   Location Based on DNS Domain Name ......................................................... 55 
5.4.4.2   Location Based on NetBIOS Domain Name ................................................... 56 



 

6 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

5.4.5   Task Processing Rule Details ............................................................................ 57 
5.4.5.1   Determine DNS Domain Name of the Domain ............................................... 58 
5.4.5.2   Identify List of Candidate Domain Controllers Based on DNS Information ......... 59 
5.4.5.3   Ping the Candidate Domain Controllers for "Liveness" and Capability 

Verification Using LDAP Ping Mechanism ..................................................... 59 
5.4.5.4   Determine NetBIOS Name of the Domain .................................................... 61 
5.4.5.5   Location of Domain Controllers Based on NetBIOS Group Names .................... 61 
5.4.5.6   Returning Results to the Task Initiator and Updating the Client ADM ............... 63 

5.5   Task Security ...................................................................................................... 64 

6   Joining a Domain Using a Predefined Account ........................................................ 65 
6.1   Task Overview ..................................................................................................... 65 

6.1.1   Task Purpose ................................................................................................. 65 
6.1.2   Task Applicability ........................................................................................... 65 
6.1.3   Task Use Cases .............................................................................................. 65 

6.1.3.1   Stakeholders and Interests Summary .......................................................... 65 
6.1.3.2   Supporting Actors and Task Interests Summary ........................................... 65 
6.1.3.3   Use Case Diagrams ................................................................................... 66 
6.1.3.4   Join a Client Computer to a Domain Using a Predefined Account — Client 

Computer ............................................................................................... 66 
6.2   Task Context ....................................................................................................... 67 

6.2.1   Task Environment .......................................................................................... 67 
6.2.2   Task Relationships .......................................................................................... 67 

6.2.2.1   Black Box Relationship Diagram ................................................................. 67 
6.2.2.2   Task Dependencies ................................................................................... 68 
6.2.2.3   Task Influences ........................................................................................ 68 

6.2.3   Task Assumptions and Preconditions ................................................................. 68 
6.2.4   Task Versioning and Capability Negotiation ........................................................ 68 

6.3   Task Architecture ................................................................................................. 69 
6.3.1   Task Architectural Constraints .......................................................................... 69 
6.3.2   Task Abstract Data Model ................................................................................ 69 
6.3.3   Task Abstract Parameters ................................................................................ 70 
6.3.4   Task Abstract Results...................................................................................... 70 
6.3.5   White-Box Relationships .................................................................................. 71 
6.3.6   Task Events ................................................................................................... 72 

6.3.6.1   Task Timers ............................................................................................. 72 
6.3.6.2   Task Non-Timer Events ............................................................................. 72 

6.3.7   Task Architecture and Communication .............................................................. 72 
6.3.8   Task Processing Rules ..................................................................................... 73 
6.3.9   Task Failure Scenarios .................................................................................... 74 

6.4   Task Details ........................................................................................................ 74 
6.4.1   Task Precondition Details ................................................................................ 74 
6.4.2   Task Initialization of External Entities ................................................................ 74 
6.4.3   Task Event Details .......................................................................................... 75 

6.4.3.1   Task Timer Details .................................................................................... 75 
6.4.3.2   Task Non-Timer Event Details .................................................................... 75 

6.4.4   Task Architectural Details ................................................................................ 75 
6.4.5   Task Processing Rule Details ............................................................................ 76 

6.4.5.1   Locate a Domain Controller ........................................................................ 77 
6.4.5.2   Establish SMB/CIFS Session to the Domain Controller ................................... 78 
6.4.5.3   Retrieve Domain Information from the Domain Controller .............................. 78 
6.4.5.4   Validate the Predefined Account Credentials ................................................. 79 
6.4.5.5   Enumerate Domain Trusts ......................................................................... 79 



 

7 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

6.4.5.6   Update Local State.................................................................................... 80 
6.4.5.7   Close Connections .................................................................................... 81 
6.4.5.8   Reinitialize Local Protocols ......................................................................... 81 

6.5   Task Security ...................................................................................................... 81 

7   Joining a Domain by Creating an Account via SAMR ............................................... 82 
7.1   Task Overview ..................................................................................................... 82 

7.1.1   Task Purpose ................................................................................................. 82 
7.1.2   Task Applicability ........................................................................................... 82 
7.1.3   Task Use Cases .............................................................................................. 82 

7.1.3.1   Stakeholders and Interests Summary .......................................................... 82 
7.1.3.2   Supporting Actors and Task Interests Summary ........................................... 82 
7.1.3.3   Use Case Diagrams ................................................................................... 83 
7.1.3.4   Join a Client Computer to a Domain by Creating an Account via SAMR — 

Client Computer ...................................................................................... 83 
7.2   Task Context ....................................................................................................... 84 

7.2.1   Task Environment .......................................................................................... 84 
7.2.2   Task Relationships .......................................................................................... 84 

7.2.2.1   Black Box Relationship Diagrams ................................................................ 84 
7.2.2.2   Task Dependencies ................................................................................... 85 
7.2.2.3   Task Influences ........................................................................................ 85 

7.2.3   Task Assumptions and Preconditions ................................................................. 85 
7.2.4   Task Versioning and Capability Negotiation ........................................................ 85 

7.3   Task Architecture ................................................................................................. 86 
7.3.1   Task Architectural Constraints .......................................................................... 86 
7.3.2   Task Abstract Data Model ................................................................................ 86 
7.3.3   Task Abstract Parameters ................................................................................ 87 
7.3.4   Task Abstract Results...................................................................................... 88 
7.3.5   White-Box Relationships .................................................................................. 88 
7.3.6   Task Events ................................................................................................... 89 

7.3.6.1   Task Timers ............................................................................................. 89 
7.3.6.2   Task Non-Timer Events ............................................................................. 89 

7.3.7   Task Architecture and Communication .............................................................. 89 
7.3.8   Task Processing Rules ..................................................................................... 90 
7.3.9   Task Failure Scenarios .................................................................................... 91 

7.4   Task Details ........................................................................................................ 91 
7.4.1   Task Precondition Details ................................................................................ 91 
7.4.2   Task Initialization of External Entities ................................................................ 91 
7.4.3   Task Event Details .......................................................................................... 92 

7.4.3.1   Task Timer Details .................................................................................... 92 
7.4.3.2   Task Non-Timer Event Details .................................................................... 92 

7.4.4   Task Architectural Details ................................................................................ 92 
7.4.5   Task Processing Rule Details ............................................................................ 93 

7.4.5.1   Locate a Domain Controller ........................................................................ 95 
7.4.5.2   Establish Authenticated SMB Session .......................................................... 95 
7.4.5.3   Retrieve Domain Information ..................................................................... 95 
7.4.5.4   Create Client Computer Account ................................................................. 95 
7.4.5.5   Update Client Computer Account ................................................................ 97 
7.4.5.6   Enumerate Domain Trusts ......................................................................... 97 
7.4.5.7   Update Local State.................................................................................... 97 
7.4.5.8   Disable New Computer Account on Domain Controller ................................... 98 
7.4.5.9   Close Connections .................................................................................... 99 
7.4.5.10   Reinitialize Local Protocols ....................................................................... 99 



 

8 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

7.5   Task Security ...................................................................................................... 99 

8   Joining a Domain by Creating an Account via LDAP .............................................. 100 
8.1   Task Overview .................................................................................................... 100 

8.1.1   Task Purpose ................................................................................................ 100 
8.1.2   Task Applicability .......................................................................................... 100 
8.1.3   Task Use Cases ............................................................................................. 100 

8.1.3.1   Stakeholders and Interests Summary ......................................................... 100 
8.1.3.2   Supporting Actors and Task Interests Summary .......................................... 100 
8.1.3.3   Use Case Diagrams .................................................................................. 101 
8.1.3.4   Join a Client Computer to a Domain by Creating an Account via LDAP — 

Client Computer ..................................................................................... 101 
8.2   Task Context ...................................................................................................... 102 

8.2.1   Task Environment ......................................................................................... 102 
8.2.2   Task Relationships ......................................................................................... 102 

8.2.2.1   Black Box Relationship Diagrams ............................................................... 102 
8.2.2.2   Task Dependencies .................................................................................. 103 
8.2.2.3   Task Influences ....................................................................................... 103 

8.2.3   Task Assumptions and Preconditions ................................................................ 103 
8.2.4   Task Versioning and Capability Negotiation ....................................................... 103 

8.3   Task Architecture ................................................................................................ 103 
8.3.1   Task Architectural Constraints ......................................................................... 103 
8.3.2   Task Abstract Data Model ............................................................................... 104 
8.3.3   Task Abstract Parameters ............................................................................... 105 
8.3.4   Task Abstract Results..................................................................................... 105 
8.3.5   White-Box Relationships ................................................................................. 106 
8.3.6   Task Events .................................................................................................. 107 

8.3.6.1   Task Timers ............................................................................................ 107 
8.3.6.2   Task Non-Timer Events ............................................................................ 107 

8.3.7   Task Architecture and Communication ............................................................. 107 
8.3.8   Task Processing Rules .................................................................................... 108 
8.3.9   Task Failure Scenarios ................................................................................... 109 

8.4   Task Details ....................................................................................................... 109 
8.4.1   Task Precondition Details ............................................................................... 109 
8.4.2   Task Initialization of External Entities ............................................................... 109 
8.4.3   Task Event Details ......................................................................................... 109 

8.4.3.1   Task Timer Details ................................................................................... 109 
8.4.3.2   Task Non-Timer Event Details ................................................................... 110 

8.4.4   Task Architectural Details ............................................................................... 110 
8.4.5   Task Processing Rule Details ........................................................................... 111 

8.4.5.1   Locate a Domain Controller ....................................................................... 113 
8.4.5.2   Establish Authenticated LDAP Connection ................................................... 113 
8.4.5.3   Retrieve Domain Information .................................................................... 114 
8.4.5.4   Create Client Computer Account on the Domain Controller ............................ 115 
8.4.5.5   Enumerate Domain Trusts ........................................................................ 119 
8.4.5.6   Update Local State................................................................................... 119 
8.4.5.7   Rollback Changes on Domain Controller ...................................................... 119 
8.4.5.8   Close Connections ................................................................................... 121 
8.4.5.9   Reinitialize Local Protocols ........................................................................ 121 

8.5   Task Security ..................................................................................................... 122 

9   Unjoining a Domain Member ................................................................................ 123 
9.1   Task Overview .................................................................................................... 123 



 

9 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

9.1.1   Task Purpose ................................................................................................ 123 
9.1.2   Task Applicability .......................................................................................... 123 
9.1.3   Task Use Cases ............................................................................................. 123 

9.1.3.1   Stakeholders and Interests Summary ......................................................... 123 
9.1.3.2   Supporting Actors and Task Interests Summary .......................................... 123 
9.1.3.3   Use Case Diagram ................................................................................... 124 
9.1.3.4   Unjoining a Domain Member - Client Computer ........................................... 124 

9.2   Task Context ...................................................................................................... 125 
9.2.1   Task Environment ......................................................................................... 125 
9.2.2   Task Relationships ......................................................................................... 125 

9.2.2.1   Black Box Relationship Diagrams ............................................................... 125 
9.2.2.2   Task Dependencies .................................................................................. 126 
9.2.2.3   Task Influences ....................................................................................... 126 

9.2.3   Task Assumptions and Preconditions ................................................................ 126 
9.2.4   Task Versioning and Capability Negotiation ....................................................... 126 

9.3   Task Architecture ................................................................................................ 126 
9.3.1   Task Architectural Constraints ......................................................................... 126 
9.3.2   Task Abstract Data Model ............................................................................... 127 
9.3.3   Task Abstract Parameters ............................................................................... 127 
9.3.4   Task Abstract Results..................................................................................... 128 
9.3.5   White-Box Relationships ................................................................................. 129 
9.3.6   Task Events .................................................................................................. 130 

9.3.6.1   Task Timers ............................................................................................ 130 
9.3.6.2   Task Non-Timer Events ............................................................................ 130 

9.3.7   Task Architecture and Communication ............................................................. 130 
9.3.8   Task Processing Rules .................................................................................... 130 
9.3.9   Task Failure Scenarios ................................................................................... 131 

9.4   Task Details ....................................................................................................... 131 
9.4.1   Task Precondition Details ............................................................................... 131 
9.4.2   Task Initialization of External Entities ............................................................... 131 
9.4.3   Task Event Details ......................................................................................... 131 

9.4.3.1   Task Timer Details ................................................................................... 131 
9.4.3.2   Task Non-Timer Event Details ................................................................... 131 

9.4.4   Task Architectural Details ............................................................................... 131 
9.4.5   Task Processing Rule Details ........................................................................... 132 

9.4.5.1   Locate a Domain Controller ....................................................................... 133 
9.4.5.2   Establish SMB Connection ......................................................................... 134 
9.4.5.3   Disable Computer Account ........................................................................ 134 
9.4.5.4   Update Local State................................................................................... 135 
9.4.5.5   Close Connections ................................................................................... 136 
9.4.5.6   Reinitialize Local Protocols ........................................................................ 136 

9.5   Task Security ..................................................................................................... 137 

10   Security .............................................................................................................. 138 
10.1   Untrusted Data ................................................................................................. 138 
10.2   Authentication .................................................................................................. 138 

11   Appendix A: Product Behavior ............................................................................ 139 

12   Change Tracking ................................................................................................. 142 

13   Index ................................................................................................................. 143 



 

10 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

1   Introduction 

A "Defined Task" is a logical procedure that uses one or more protocols or systems to accomplish a 
specific goal. This Defined Task System Document describes a set of Tasks that are centered on 
domain interactions and management. 

In conjunction with Protocol Technical Documents (TDs), this Defined Task System Document 
describes the rules for information exchange relevant to the Tasks and the protocols that are used 
to operate or communicate with Windows client operating systems and selected Windows Server 
scenarios (those included in published TDs) in their various environments. 

Microsoft Windows networks are often configured with a domain controller providing centralized 
services such as storage of accounts and administration of many computers (domain clients). This 
document describes how specific protocols are used together to maintain a relationship with the 
domain when domain clients interact with a domain. 

This document is organized as follows: 

Section 1, "Introduction", describes what is covered in this document, provides a list of terms 

defined in this document, as well as terms used in this document but defined elsewhere in the 
documentation set, and provides a list of references that apply to the overall Windows Protocols 
System. 

Section 2, "Overview", introduces the Windows Protocols System. It provides a high-level map of 

how the systems and individual protocols in MCPP relate to each other. 

Section 3, "Background Knowledge and System-Specific Concepts", presents the background 

information that the reader would reasonably need to know to understand and implement the 
diverse set of protocols that exist in the MCPP document set. It includes concepts related to 
domains interaction such as types of domains, accounts, and services. 

The following sections cover the defined tasks in this document: 

Section 5, "Locating a Domain Controller", helps a client to locate a domain controller using the 

Domain Name System (DNS) infrastructure, NetBIOS infrastructure, or both, available to the 

client. 

Section 6, "Joining a Domain Using Predefined Account", presents the process for a client to join 

a domain when the client already has an account on the domain. 

Section 7, "Joining a Domain by Creating an Account via SAMR", presents the process for a client 

to join a domain by creating a new account using the Security Account Manager (SAM) Remote 
protocol. 

Section 8, "Joining a Domain by Creating an Account via LDAP", presents the process for a client 

to join a domain by creating a new account using the Lightweight Directory Access Protocol 
(LDAP). 

Section 9, "Removing a Domain Member", removes a client computer from the domain. 

The tasks in sections 6 through 9 all depend on the local [MS-NRPC] server for locating a domain 

controller. Of the three domain join tasks, the Joining a Domain with a Predefined Account task 
establishes a base level to understand the sequence of operations. The Joining a Domain by 
Creating an Account via SAM task allows people writing domain controllers to know how the client 
will behave when joining the domain. The Joining a Domain by Creating an Account via LDAP task 

%5bMS-NRPC%5d.pdf


 

11 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

lets people writing domain controllers see how joining the domain can be done without the full 
implementation on the client side of protocols such as SAMR, RPC, and SMB.  

  

1.1   Glossary 

The following terms are defined in [MS-GLOS]: 

Active Directory 
Authenticate 
Binding 
Credential 
Directory 

Distinguished Name (DN) 
Domain 
Domain Account 
Domain Controller (DC) 

Domain Member (member machine) 
Domain Naming Context (domain NC) 

Domain Name System (DNS) 
Fully Qualified Domain Name (FQDN) (1) (2) 
Group 
Lightweight Directory Access Protocol (LDAP) 
Naming Context (NC) 
NetBIOS 
Netlogon 

Policy 
Read-Only Domain Controller (RODC) 
Security Account Manager (SAM) built-in database 
Security Identifier (SID) 
Server Message Block (SMB) 
Service Resource Record (SRV) 

Trusted Domain 

The following terms are defined in [MS-ADTS]: 

Active Directory Domain Services (AD DS) 
Active Directory Lightweight Directory Services (AD LDS) 
Filtered Attribute Set 
forest 

The following terms are defined in [MS-NRPC]: 

Shared Secret 

The following terms are specific to this document: 

Account: A synonym for security principal or principal. 

Account Database: The portion of the directory that maintains the accounts for the principals 
of the domain. In Windows NT-4 style domains, the account database includes all 
information in the NT domain; in AD-style domains, the account database contains a subset of 
the entire LDAP-accessible directory the AD-style domain hosts. 

%5bMS-GLOS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-NRPC%5d.pdf


 

12 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

AD-Style Domain: A domain comprising Windows 2000 Server, Windows Server 2003, Windows 
Server 2003 R2, Windows Server 2008, Windows Server 2008 R2, Windows Server 2012, or 

Windows Server 2012 R2 server computers. AD-style domains implement Active Directory 
(AD), LDAP, Kerberos authentication, and advanced configurations and features not supported 

in NT 4-style domains. 

Client: Synonym for client computer. 

Client Computer: A computer that is not a domain controller server; the computer may or 
may not be joined to a domain. 

directory string: A string syntax specified in [RFC2252] section 6.10. 

Domain Client: A client computer that is joined to a domain. The domain client can be a client 
or a server that offers other services to its clients. When the domain client acts as a supplicant 

to another domain client, the supplicant is referred to as a domain client in a workstation 
role and the latter as a domain client in a server role. 

Domain Client in a Client Role: A domain member that acts as a supplicant to another domain 
client. 

Domain Client in a Workstation Role: A domain member that offers other services to other 
domain clients. 

Domain Controller Server: A domain member, which can be a client or a server that offers 
other services to its clients. When the domain client acts as a supplicant to another domain 
client, the supplicant is referred to as a domain client in a workstation role and the latter 
as a domain client in a server role. 

Identity: An account that represents a person (user account), an application (service account), 
and computers that participate in the domain (machine accounts). A password is used by the 
system as proof of an identity. 

Member Server: A server that is joined to a domain and is not a domain controller. Member 

servers typically function as file servers, application servers, and so on and defer user 
authentication to the domain controller. 

Predefined Account: A machine account created in the directory by a domain administrator 
before a machine is associated with the account during domain join (see section 6). 

Principal: A synonym of security principal. 

Server: A domain controller. Used as a synonym for domain controller in this document. 

Single Sign-On: A process that enables a user with a domain account to log on to a network 
once and gain access to all network resources. 

Security Principal: An entity associated with a human user or a program that can be 
authenticated. At a minimum, it has two basic attributes, a name and an identifier, that 
uniquely identifies it and makes it meaningful to the system, administrators, and users. A 

security principal is also known as a principal or an account. 

Trusted Third Party: A trusted third party issues signed statements to stated parties enabling 
those stated parties to act on another identity's behalf for a certain amount of time. It is 
trusted to perform a set of specialized functions, such as a security token service that provides 
authentication and single sign-on services to Web services. ([MSDN-SUBSYSDSGN]). As a 
trusted authentication service on the network, this service knows all passwords and can grant 

http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkID=161303


 

13 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

access to any server. It is convenient, but also the single point of failure and requires a high 
level of physical security. For the Kerberos authentication protocol, the trusted third party 

arbitrator is a server known as a Key Distribution Center (KDC) which runs the Kerberos 
daemons. 

Windows NT-4 Style Domain: A domain comprised of Windows NT 4.0 servers with an account 
database that includes all the information in the domain. Windows NT 4.0 style domains do 
not implement Active Directory (AD), LDAP directories or Kerberos authentication. 

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) are used as 
described in [RFC2119]. Note that in [RFC2119] terms, most of these specifications should be 
imperative, to ensure interoperability. All statements of optional behavior use either MAY, 
SHOULD, or SHOULD NOT. 

Any specification that does not explicitly use one of these terms is mandatory, exactly as if it 
used MUST. 

1.2   References 

References to Microsoft Open Specifications documentation do not include a publishing year because 
links are to the latest version of the documents, which are updated frequently. References to other 

documents include a publishing year when one is available. 

1.2.1   Normative References 

We conduct frequent surveys of the normative references to assure their continued availability. If 
you have any issue with finding a normative reference, please contact dochelp@microsoft.com. We 
will assist you in finding the relevant information. 

[FIPS186-2] FIPS PUBS, "Digital Signature Standard (DSS)", FIPS PUB 186-2, January 2000, 

http://csrc.nist.gov/publications/fips/fips186-2/fips186-2.pdf 

[MS-ADA1] Microsoft Corporation, "Active Directory Schema Attributes A-L". 

[MS-ADA3] Microsoft Corporation, "Active Directory Schema Attributes N-Z". 

[MS-ADSC] Microsoft Corporation, "Active Directory Schema Classes". 

[MS-ADTS] Microsoft Corporation, "Active Directory Technical Specification". 

[MS-APDS] Microsoft Corporation, "Authentication Protocol Domain Support". 

[MS-AUTHSO] Microsoft Corporation, "Windows Authentication Services System Overview". 

[MS-CAESO] Microsoft Corporation, "Certificate Autoenrollment System Overview". 

[MS-CASO] Microsoft Corporation, "Certification Authority System Overview". 

[MS-CIFS] Microsoft Corporation, "Common Internet File System (CIFS) Protocol". 

[MS-DFSC] Microsoft Corporation, "Distributed File System (DFS): Referral Protocol". 

[MS-DPSP] Microsoft Corporation, "Digest Protocol Extensions". 

[MS-DRSR] Microsoft Corporation, "Directory Replication Service (DRS) Remote Protocol". 

[MS-DTYP] Microsoft Corporation, "Windows Data Types". 

http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://go.microsoft.com/fwlink/?LinkId=168870
%5bMS-ADA1%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADSC%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-APDS%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkID=311687
%5bMS-CIFS%5d.pdf
%5bMS-DFSC%5d.pdf
%5bMS-DPSP%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-DTYP%5d.pdf


 

14 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

[MS-ERREF] Microsoft Corporation, "Windows Error Codes". 

[MS-FSSO] Microsoft Corporation, "File Access Services System Overview". 

[MS-GPSO] Microsoft Corporation, "Group Policy System Overview". 

[MS-KILE] Microsoft Corporation, "Kerberos Protocol Extensions". 

[MS-LSAD] Microsoft Corporation, "Local Security Authority (Domain Policy) Remote Protocol". 

[MS-MAIL] Microsoft Corporation, "Remote Mailslot Protocol". 

[MS-MQSO] Microsoft Corporation, "Message Queuing System Overview". (Archived)  

[MS-NAPSO] Microsoft Corporation, "Network Policy and Access Services System Overview". 

[MS-NBTE] Microsoft Corporation, "NetBIOS over TCP (NBT) Extensions". 

[MS-NLMP] Microsoft Corporation, "NT LAN Manager (NTLM) Authentication Protocol". 

[MS-NRPC] Microsoft Corporation, "Netlogon Remote Protocol". 

[MS-PAC] Microsoft Corporation, "Privilege Attribute Certificate Data Structure". 

[MS-PSSO] Microsoft Corporation, "Print Services System Overview". 

[MS-RCMP] Microsoft Corporation, "Remote Certificate Mapping Protocol". 

[MS-RMSO] Microsoft Corporation, "Rights Management Services System Overview". 

[MS-SAMR] Microsoft Corporation, "Security Account Manager (SAM) Remote Protocol (Client-to-
Server)". 

[MS-SMB] Microsoft Corporation, "Server Message Block (SMB) Protocol". 

[MS-SMB2] Microsoft Corporation, "Server Message Block (SMB) Protocol Versions 2 and 3". 

[MS-SNTP] Microsoft Corporation, "Network Time Protocol (NTP) Authentication Extensions". 

[MS-SRVS] Microsoft Corporation, "Server Service Remote Protocol". 

[MS-TPSO] Microsoft Corporation, "Transaction Processing Services System Overview". 

[MS-WMSO] Microsoft Corporation, "Windows Management Services System Overview". 

[MS-WSO] Microsoft Corporation, "Windows System Overview". 

[MS-WSUSO] Microsoft Corporation, "Windows Server Update Services System Overview". 

[RFC1001] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP 
Transport: Concepts and Methods", STD 19, RFC 1001, March 1987, 
http://www.ietf.org/rfc/rfc1001.txt 

[RFC1002] Network Working Group, "Protocol Standard for a NetBIOS Service on a TCP/UDP 
Transport: Detailed Specifications", STD 19, RFC 1002, March 1987, 
http://www.ietf.org/rfc/rfc1002.txt 

[RFC1034] Mockapetris, P., "Domain Names - Concepts and Facilities", STD 13, RFC 1034, 
November 1987, http://www.ietf.org/rfc/rfc1034.txt 

%5bMS-ERREF%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkID=311687
%5bMS-KILE%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-MAIL%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkID=311687
%5bMS-NBTE%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-PAC%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
%5bMS-RCMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SNTP%5d.pdf
%5bMS-SRVS%5d.pdf
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkID=311687
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
http://go.microsoft.com/fwlink/?LinkId=90263


 

15 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

[RFC1035] Mockapetris, P., "Domain Names - Implementation and Specification", STD 13, RFC 
1035, November 1987, http://www.ietf.org/rfc/rfc1035.txt 

[RFC1769] Mills, D., "Simple Network Time Protocol (SNTP)", RFC 1769, March 1995, 
http://www.ietf.org/rfc/rfc1769.txt 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 
2119, March 1997, http://www.rfc-editor.org/rfc/rfc2119.txt 

[RFC2247] Kille, S., Wahl, M., Grimstad, A., et al., "Using Domains in LDAP/X.500 Distinguished 
Names", RFC 2247, January 1998, http://www.ietf.org/rfc/rfc2247.txt 

[RFC2251] Wahl, M., Howes, T., and Kille, S., "Lightweight Directory Access Protocol (v3)", RFC 
2251, December 1997, http://www.ietf.org/rfc/rfc2251.txt 

[RFC2252] Wahl, M., Coulbeck, A., Howes, T., and Kille, S., "Lightweight Directory Access Protocol 

(v3): Attribute Syntax Definitions", RFC 2252, December 1997, http://www.ietf.org/rfc/rfc2252.txt 

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., et al., "HTTP Authentication: Basic and Digest 
Access Authentication", RFC 2617, June 1999, http://www.ietf.org/rfc/rfc2617.txt 

[RFC2782] Gulbrandsen, A., Vixie, P., and Esibov, L., "A DNS RR for specifying the location of 
services (DNS SRV)", RFC 2782, February 2000, http://www.ietf.org/rfc/rfc2782.txt 

[RFC2831] Leach, P., and Newman, C., "Using Digest Authentication as a SASL Mechanism", RFC 

2831, May 2000, http://www.ietf.org/rfc/rfc2831.txt 

[RFC3596] Thomson, S., Huitema, C., Ksinant, V., and Souissi, M., "DNS Extensions to Support IP 
version 6", RFC 3596, October 2003, http://www.ietf.org/rfc/rfc3596.txt 

[RFC3629] Yergeau, F., "UTF-8, A Transformation Format of ISO 10646", STD 63, RFC 3629, 
November 2003, http://www.ietf.org/rfc/rfc3629.txt 

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network 

Authentication Service (V5)", RFC 4120, July 2005, http://www.ietf.org/rfc/rfc4120.txt 

1.2.2   Informative References 

[MS-ADMS] Microsoft Corporation, "Shared Abstract Data Model Elements". 

[MS-ADOD] Microsoft Corporation, "Active Directory Protocols Overview". 

[MS-GLOS] Microsoft Corporation, "Windows Protocols Master Glossary". 

[MSDN-SUBSYSDSGN] Microsoft Corporation, "Trusted Subsystem Design", 
http://msdn.microsoft.com/en-us/library/aa905320.aspx 

[RFC819] Su, Z.S., and Postel, J., "The Domain Naming Convention for Internet User Applications", 
RFC 819, August 1982, http://www.ietf.org/rfc/rfc0819.txt 

[RFC1305] Mills, D. L., "Network Time Protocol (Version 3) Specification, Implementation and 

Analysis", RFC 1305, March 1992, http://www.ietf.org/rfc/rfc1305.pdf 

[RFC2052] Gulbrandsen, A., and Vixie, P., "A DNS RR for specifying the location of services (DNS 
SRV)", RFC 2052, October 1996, http://www.ietf.org/rfc/rfc2052.txt 

[RFC4086] Eastlake III, D., Schiller, J., and Crokcer, S., "Randomness Requirements for Security", 
BCP 106, RFC 4086, June 2005, http://www.ietf.org/rfc/rfc4086.txt 

http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=90289
http://go.microsoft.com/fwlink/?LinkId=90317
http://go.microsoft.com/fwlink/?LinkId=91344
http://go.microsoft.com/fwlink/?LinkId=90325
http://go.microsoft.com/fwlink/?LinkId=90326
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=90387
http://go.microsoft.com/fwlink/?LinkId=107027
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-ADMS%5d.pdf
%5bMS-ADOD%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=161303
http://go.microsoft.com/fwlink/?LinkId=90495
http://go.microsoft.com/fwlink/?LinkId=90272
http://go.microsoft.com/fwlink/?LinkId=94441
http://go.microsoft.com/fwlink/?LinkId=90456


 

16 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

2   Overview 

Section 1, "Introduction" primarily describes this Defined Task System Document and introduces the 
Tasks being documented. 

2.1   Summary 

Microsoft Windows networks are often configured with a domain controller providing centralized 
storage of accounts and administration of many machines. Many network related operations depend 
on domains in order to complete various tasks. The Domain Interactions System describes some of 

these tasks, including: 

Locating a domain controller using DNS and NetBIOS. 

Joining a domain using a predefined account. 

Joining a domain by creating an account via the Security Account Manager (SAM) Remote 

Protocol ([MS-SAMR]). 

Joining a domain by creating an account via the Lightweight Directory Access Protocol (LDAP). 

Removing a domain member. 

The Domain Interactions System includes protocols that are used to communicate with a domain 
controller and maintain state. It also includes protocols that are used to augment authentication and 
authorization actions, and protocols that are used to interact with domain controllers. The 
relationships among the protocols that implement that functionality are complicated, and this 

document provides the framework necessary to understand them. 

The domain controller serves a central role in an enterprise network by functioning as the root of 
authority for sets of users and computers. A domain controller aggregates functionality relating to 
identity management, authentication, authorization, and other management policy. Clients of the 
domain functionality in turn rely upon the domain controller to establish secure communication, 

authorize requests, and apply policy. A client of the domain may itself be a server of some other 
role, for example, a file server that is handling the file storage needs of other client workstations. 

2.2   List of Tasks 

The following tasks are described in this system: 

Locating a Domain Controller: This set of tasks describes locating domain controllers using DNS, 
NetBIOS, or both. 

Joining a Domain Using a Predefined Account: This task describes how a computer joins a 

domain using an account that is already configured. 

Joining a Domain by Creating an Account via SAM: This task describes how a computer joins a 
domain after creating a new account via the Security Account Manager (SAM) Remote Protocol 
([MS-SAMR]). 

Joining a Domain by Creating an Account via LDAP: This task describes how a computer joins a 
domain after creating a new account via the Lightweight Directory Access Protocol (LDAP). 

Removing a Domain Member: This task describes how a member is removed from the domain. 

%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf


 

17 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

2.3   Relevant Standards 

The Domain Interactions System uses and extends the following standards: 

Lightweight Directory Access Protocol (LDAP), as specified in [RFC2247] 

Kerberos Authentication Protocol, as specified in [RFC4120]. This standard is used for 
authentication. 

Simple Network Time Protocol (SNTP), as specified in [RFC1769]. This standard is an 
adaptation of the Network Time Protocol (NTP) used to synchronize computer clocks in the Internet. 
SNTP can be used when the ultimate performance of the full NTP implementation described in 
[RFC1305] is not needed or justified. 

Domain Names - Concepts and Facilities, as specified in [RFC1034]. This standard is used for 

DNS and domain naming concepts. 

Domain Names - Implementation and Specification, as specified in [RFC1035]. This standard is 

used for DNS and provides details of the domain system and protocol. 

DNS Extensions to Support IP Version 6, as specified in [RFC3596]. This standard is used for 
DNS to support hosts running IP version 6 (IPv6). 

UTF-8, A Transformation Format of ISO 10646, as specified in [RFC3629]. This standard is 

used for string data type specification. 

Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: Concepts and Methods, 
as specified in [RFC1001]. This standard is used for NetBIOS services. 

Protocol Standard for a NetBIOS Service on a TCP/UDP Transport: Detailed Specifications, 
as specified in [RFC1002]. This standard is used for NetBIOS services. 

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=91344
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90289
http://go.microsoft.com/fwlink/?LinkId=90272
http://go.microsoft.com/fwlink/?LinkId=90263
http://go.microsoft.com/fwlink/?LinkId=90264
http://go.microsoft.com/fwlink/?LinkId=107027
http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261


 

18 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

3   Background Knowledge and System-Specific Concepts 

This section identifies the theoretical and practical information needed to understand this document 
and the Tasks in this system, and summarizes: 

Background knowledge that is required to understand this document. 

Concepts that are specific to the Tasks in this system. 

3.1   Domains 

The purpose of the domain is to provide a centrally managed repository for accounts on a network. 
Entities within the domain can authenticate each other as part of other tasks, and can leverage the 
domain for authorization information to determine access to network resources. The domain system 
evolved from a time when each server on a network had its own account database and 
management. This required far more management on each server over time, and increased 
management for the users, who often had multiple accounts spread over different servers. Domains 

are directly analogous to Kerberos realms, as introduced in [RFC4120] section 1.2. 

Specifically, a domain provides the following services: 

A common set of identifiers that can be centrally managed. 

Mechanisms for authenticating actors within the system to one another, based on those 

identifiers. 

Mechanisms for associating additional authorization information with those identifiers, allowing 

more efficient management of access control. 

Mechanisms for managing the systems and associated operating environments 

In practice, domains are collections of users and computers, with the domain controllers (DC) 
serving the dual roles of hosting all the information about the domain, and serving as the Trusted 

Third Party for the domain. Typically, users use the domain to authenticate to servers, although 
any principal in the domain can make use of this functionality. 

Domains are a step toward single sign-on, a concept by which a user authenticates once, and then 
can access all the relevant servers and other resources he or she needs. Rather than managing 
multiple sets of credentials, a single user identity and password (or equivalent) can be maintained 
by the user, and is applicable to all the tasks that a user needs to perform. 

Originally, servers and domains were more concerned with correctly identifying a user making a 
request, to ensure that protection and authorization policies were enforced correctly. As threats 
became more sophisticated, it became equally necessary that the clients were able to authenticate 

the servers as well. 

Also evolving at this time was the aggregation of servers into central management within corporate 
networks. While many servers originally were installed to support relatively small workgroups, the 
consolidation of identities also drove a desire for corporate IT managers to enforce company policy 

over more aspects of the client machines. Since all identities were in the domain, it was a natural 
place to root the policy system, allowing the IT managers to create and distribute policy that 
controlled the client machines. 

To meet these needs and evolve to mitigate new threats, the general requirements of a domain are: 

1. Designation of certain servers as DC that host the full account set. 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-GLOS%5d.pdf


 

19 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

2. Designation of the rest of the servers as member servers that defer authentication of users to 
the DCs. 

3. A relatively simple authentication protocol (NTLM) that can authenticate a client to a server. 

4. Supplanting this protocol with a protocol that provides mutual authentication of client and server 

(Kerberos). 

5. Providing these authentication protocols to all members of the domain for use between clients 
and servers. 

6. Providing these authentication protocols between client machines and DCs for the purpose of 
authenticating users as they begin using their machines interactively. 

7. Enforce policies based on the membership of these users and machines in the domain (domain 
policy). 

8. Further refine the policies based on expressing per-customer business need as part of the domain 

structure (group policy). 

These satisfied the general requirements of the domain. Further functionality has been included: 

9. Support for additional authentication schemes, such as Digest and SSL/TLS. 

Domains are typically implemented with multiple computers acting as DCs. This allows redundancy 
in deployment and guards against disruptive loss of service. In general, a client of the domain 

services treats all DCs as equivalent. The domain typically enforces loose consistency, guaranteeing 
only that all replication will eventually be put into an inactive state. As such, the client of the domain 
MUST treat the DC that it has selected as authoritative for its domain (subject to SID Filtering; see 
[MS-PAC] section 4.1.2.2). 

For certain, relatively rare events, the client can seek a specific DC, such as the primary DC for the 
domain. Any such action inherently limits the scalability of the system by forcing traffic through a 
specific server, and are to be used only under well understood circumstances. 

Windows implements two types of domains. This document distinguishes between earlier forms of 
domains and later AD-based domains by referring to Windows NT 4.0-style domains (section 
3.1.1) and AD-style domains (section 3.1.2). Behavior specific to one form of domain or the other 
will be called out as such. It is important to note that these groupings are descriptive, and an 
implementation of these or other protocols around DC functionality can make implementation-
dependent decisions about what levels of support or functionality to provide. 

The term account database is used to refer to that portion of the directory that maintains the 

accounts for the principal of the domain. The account database can be considered a subset of the 
complete LDAP-accessible directory that an AD-style domain hosts. The account database comprises 
all of what is available in Windows NT 4.0-style domains. 

Finally, because domains have both traditional client computers (workstations or clients) as well as 
server computers (servers) as members, the normal terms of client and server as used in other 
technical documents can become ambiguous. For this document, the term "client" generally applies 

to any member of a domain, even if that domain member is itself a server computer offering other 
services to its clients. The term "server" will generally apply to the DC. These terms can be further 
clarified as domain client and DC server or DC for clarity in certain sections. It is important to 
note that this document covers cases where a server is acting as a client to another server. In the 
cases that one domain client is acting as a supplicant to another domain client, the former is 
referred to as a domain client in a workstation role, and the latter as a domain client in a server 
role. 

%5bMS-PAC%5d.pdf
%5bMS-GLOS%5d.pdf


 

20 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

3.1.1   NT-4.0 Style Domain 

A Windows NT 4.0-style domain can be modeled as a simple table of accounts, where each row is a 
unique account. This type of domain's name is a NetBIOS name resolved by a WINS server. 

Windows NT 4.0-style domains do not have DNS names, do not have an Active Directory (AD) 
implementation or many other services that work with AD, and do not support Kerberos as an 
authentication protocol. When attempting to locate a NT 4.0-style domain the application can only 
use NetBIOS names. 

3.1.2   AD-Style Domain 

An AD-style domain is a hierarchical store of many different object types, of which account objects 

are one type. AD-Style domains have a flat NetBIOS name and an established fully qualified domain 
name (FQDN). The FQDN is the preferred name for this type of domain. Because of this, when 
attempting to locate an AD-style domain, applications using NetBIOS names and FQDNs can be run 
simultaneously. AD-style domains implement Active Directory (AD), LDAP, Kerberos authentication, 
and advanced configurations and features not supported in NT 4.0-style domains. 

3.1.3   Domain Naming 

A domain requires a name in order to be useful to clients. An AD-style domain requires a Domain 
Name System (DNS) name; it can also have a flat (non-hierarchical) NetBIOS name. The DNS 
name of the domain has to be unique--there can be only one domain with a given name. It is an 
error to configure the system such that domain names conflict. In practice, if domain names conflict, 
clients can connect to a domain controller (DC) that is not actually serving the domain for which the 
client was seeking, and thus fail to obtain the services that were desired. If the domain intends to 

support clients that only understand Windows NT 4.0-style domains, then the domain requires a 
NetBIOS name as well. Windows NT 4.0-style domains do not support DNS naming, and require a 
unique (for that network) NetBIOS name assigned for the domain. 

By convention, the NetBIOS domain name is the most specific (left-most) element of the DNS 
domain name, made upper case (although the name is not case sensitive). DNS domain names are 
limited to 255 characters overall and no more than 63 characters per label within the name, as 

specified in [RFC1034]. NetBIOS names are limited to 15 characters, as specified in [MS-NBTE]. It is 

legal to have a domain that has a domain name where the most specific label is longer than 15 
characters; that domain, however, will not have a corresponding NetBIOS name that is derived from 
the DNS name. It may have another name, defined through implementation-specific means.  It is 
also possible to have a less-specific label be longer than 15 characters, with no effect on the 
NetBIOS name. That is, a domain name such as domain.labelwithmorethanfifteencharacters.com is, 
in fact, following the conventions.  

The NetBIOS name is supposed to be unique as well, but this is not, strictly speaking, required. It is 

possible to create an arbitrary NetBIOS domain name not related to the DNS name. Also note that 
DNS is not the same as NetBIOS, and the character sets supported by each naming system are 
different. Along the same lines as the leftmost element convention, the administrator looks to the 
intersection of the common characters to both NetBIOS and DNS in order to select the name. 

It is also possible to set up development.eastcoast.sample.com and 

development.westcoast.sample.com on the same network. Because the flat name is by definition 

ambiguous, services that use that flat name can run into problems. This sort of configuration is 
never recommended. 

3.1.4   Local and Remote Domains 

Domains come in two varieties, local and remote. 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90263
%5bMS-NBTE%5d.pdf


 

21 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

3.1.4.1   Local Domains 

Every computer running Windows has a local domain; that is, it has an account database for 
accounts that are specific to that computer. Conceptually, this is an account database like any other 

with accounts, groups, security identifiers (SID), and so on. These are referred to as local 
accounts, local groups, and so on. Because computers typically do not trust each other for account 
information, these identities stay local to the computer on which they were created. 

3.1.4.2   Remote Domains and Domain Controllers 

With a remote domain, certain Windows-based servers can be configured to be domain controllers 
(DC). A DC is a server that has made its account database available to other machines in a 

controlled manner. Starting with Windows 2000 operating system, DCs began supporting a database 
of more than just accounts, becoming a general-purpose directory. This is known as Active 
Directory. 

Because the account database is typically distributed across multiple DCs, there can naturally be a 

mix of different versions of the individual servers. Active Directory has the notion of a functional 
level, which serves as a version level for the entire directory. The functional level is managed by the 

administrator and the system itself. 

A domain has built-in groups; these groups are defined by Microsoft and created within the domain 
during installation. For example, built-in groups include the Domain Users, Domain Computers, and 
Domain Admins groups. By default, the Domain Users group includes all users who are defined in 
the domain. 

A DC accepts authentication requests on behalf of the machines that have chosen to trust it. 

A DC can have peers within the domain. These peers are other servers that also have been 

configured to host this account database. Any server participating in the domain as a DC may or 
may not allow changes; the configuration is a choice of the administrator. 

When a change is allowed, the servers replicate the change so that all DCs have the same 

information. 

3.1.4.3   Domain Membership 

Domain membership is the state of trusting a third party (the domain controller (DC)) for identity 

and authentication information. Any system can conceivably be part of a domain. Windows-based 
systems can easily be configured to be part of a domain and trust their DC for many tasks. Also, 
certain configuration changes are made, such as accepting the domain as the authoritative source of 
time. 

Windows-based systems can have local groups that include members from a domain. This allows the 
member system to manage its resources in the manner most relevant to it and not be completely 
dependent on the decisions of the domain administrator. A domain administrator can create a 

domain local group for each resource that exists within a domain, such as file shares or printers, and 
then add the appropriate global groups from each domain to this domain local group. The domain 
administrator then assigns the appropriate permissions for the resources to the domain local group. 

Joining a domain ultimately distills down to establishing an account on the domain that represents 
the system joining the domain, and to setting the password (or key) for the account on both the 
domain and the actual system. In Windows, this process is encapsulated in a domain join function 

(NetJoinDomain). Several tools, such as WinBind, exist for non-Windows operating systems to 
join a Windows domain. 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf


 

22 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

All Windows-based systems have a component that manages their relationship with their DC. This 
component, called Netlogon, maintains the keys that are necessary for ongoing authentication of 

the member system to the DC. It also creates a general-purpose channel to the Netlogon instance 
on the DC. 

This channel is used by various authentication protocol implementations to redirect an 
authentication request to (or augment their activities with) their instance on the DC. 

3.1.4.4   Effect on Accounts 

Windows domains have an effect on the way that accounts and groups work. Some of this is by 
convention and some is by design. 

By convention, when a Windows-based system is added to a domain, the domain administrators 

group is made a member of the local administrators group.<1> 

By design, groups have different scopes when domains are involved. Groups can be defined to be 
globally known and thus usable by other domains or known only within the domain in which they are 

defined. 

3.2   Domain Controllers 

In a domain there domain controllers that can perform read and write operations on the directory 
(writable domain controllers) and domain controllers that can only read the directory to respond to 
authentication requests from domain clients. 

3.2.1   Writable Domain Controller 

Writable Domain Controllers (WDC) can perform all read/write operations on the Active Directory 
(AD), can replicate any changes that occur elsewhere in the domain from other WDCs and contain a 

complete copy of the directory database including credentials for all accounts. WDCs can only be 
managed by domain administrators. 

3.2.2   Read-Only Domain Controller 

Read-Only Domain Controllers (RODC) contains a copy of the directory database and a copy of the 
SYSVOL folder that contains the Group Policy Objects (GPOs) and logon scripts for client computers. 
It can respond to authentication requests just like a WDC. The RODC cannot write to or update any 

databases, can only replicate data from a WDC (for both Active Directory (AD) and SYSVOL), and 
contains a complete copy of the database except for credentials and other credential-like attributes 
that are part of the RODC filtered attributes set. RODCs can be administrated by delegated users 
that do not have any domain privileges beyond standard domain users. 

3.3   Accounts 

Accounts are always created relative to some issuing authority, which is responsible for allocating 

and assigning a security identifier (SID).<2>The basis for all interactions with a domain is an 
identity and proof of that identity. In the case of a domain, the identity is represented by an account 

in the account database for that domain, and the proof is by demonstrating knowledge of the 
password, also referred to as a shared secret, associated with that account. By knowing both, an 
entity can establish an authenticated connection to a domain controller (DC). After the DC and a 
client have authenticated each other, the DC can be used to create authenticated connections to 
other principals (for more details, see [MS-WSO] section 3.1.2.2). 

%5bMS-NRPC%5d.pdf


 

23 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

3.3.1   Account Types 

There are three main types of accounts: The user account, the service account, and the machine 
account.  

The user account is used to represent a person. The service account is very similar to a user 
account, but is used to represent a specific identity for an application running on the network. There 
is very little difference between these two types of accounts, except that the service account will 
likely have additional names associated with it. For information about names, see section 3.3.2. 

Finally, the machine account is used to represent a computer that participates in the domain. In one 
way, these are simply service accounts with well-known conventions around the name of the 
account and additional names associated with the account. 

Principals in the domain are responsible for knowing the name used on their accounts. For accounts 
representing people, the person is required to know the name of the account. For a service or 
machine, some configuration on the client of the domain typically indicates the name that will be 
used. 

In the same way, the person is required to possess the key that is used to authenticate the user 
account. Typically, this is a password, but it can also be an asymmetric key contained on an external 

device such as a smart card. Service and machine accounts typically have their keys stored in some 
form with the configuration; for example, the "keytab" file used in MIT-based Kerberos 
implementations. 

3.3.2   Account Names 

Accounts are named in a number of ways, related to the protocol used to access the account. 
Additionally, the name implies certain attributes about the principal itself, and that has certain 

implications for how the account is used. All account names serve as aliases to the single account 
object. The formats are formally defined in [MS-ADTS], but for the purposes of this document, they 
are as follows. 

Distinguished Name: The Distinguished Name (DN) of the account is the LDAP name of the 
account object. This name is a fully qualified directory path name, starting at the root of the 
domain's directory. There is no attribute for this name, since this name is the directory's primary 
way of identifying the object. 

SAM Account Name: The Security Account Manager (SAM) Account Name is considered the "flat" 
name of the account. That is, it is a single string that has no structure. The name is always relative 
to the domain; two domains can have accounts with the same sAMAccountName value. 

User Principal Name: The User Principal Name (UPN) is an alias for the account that is structured 
as an email address. The UPN can relate to the domain in which the account is located, or it might 
not. If it does not, it can match another domain or be completely unrelated. The intention is to allow 

an account to be known internally as account@corp.example.com, but referenced by the user as the 
more familiar email address account@example.com. 

Service Principal Name: The Service Principal Name (SPN) is the name by which a service is 

identified by a requesting client. The SPN refers to a unique instance of a service, and, when used 
properly by a client, allows the client to authenticate the server at the same time that the server 
authenticates the client. The SPN is constructed by the client most often as service/instance (for 
example, cifs/fileserver.sample.com). The presence of an SPN can be taken as an indication that the 

account is not associated with a user but rather a service. 

http://go.microsoft.com/fwlink/?LinkId=157182
%5bMS-ADTS%5d.pdf


 

24 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Alternate Security Identities: The Alternate Security Identities, or altSecurityIdentities, of an 
account allow other arbitrary protocols to associate names with accounts. The use of 

altSecurityIdentities is implementation-specific, since it consists of a naming convention between a 
security protocol server and the account database. 

Security Identifier: The security identifier (SID) is a numeric name for the account. The SID is 
more rigorously defined in [MS-DTYP], but consists of a domain identifier portion that identifies the 
domain, and a domain-relative portion that identifies the account within the domain. 

3.4   Domain Services 

Active Directory Domain Services (AD DS) implements one or more domains within a forest. A 
domain provides a number of services to its clients, primarily related to security and management. 

The security principals of the domain are all available from the AD DS domain controller, so the 
domain serves as the primary source of identity for the clients of the domain. The domain, through 
the relevant security protocols, provides the basis for authentication within the domain, allowing 
principal within the domain to establish authenticated connections with each other. Once 

authenticated, the domain provides authorization information in the form of additional identities 
representing groups, allowing authorization decisions to be made. 

AD DS is provided as an optional subsystem of the Windows Server operating system. When 
installed on one or more instances of the Windows Server, those instances--then known as AD DS 
domain controllers (DCs)--provide security services to security principals on all network nodes that 
participate in the AD DS domain. Because of its integration into the operating system security model 
in Windows implementations, AD DS permits only a single DC to run on a single server. Also, clients 
can join an AD DS domain, as summarized in Common System Architecture (section 4.3) and [MS-
WSO] section 4.2. 

Besides AD DS, Active Directory can operate in a different mode called Active Directory Lightweight 
Directory Services (AD LDS). Unlike AD DS, AD LDS does not host domain naming contexts 
(domain NCs) and, therefore, does not provide any domain services. It is an application-oriented 
directory service implemented by one or more DCs within an AD LDS forest. AD LDS is useful to 
applications requiring read or read-write access to a replicated database containing directory 

information accessible via the LDAP protocol. In addition, a single system can host multiple AD LDS 
DCs, whether in the same or in different AD LDS forests. Moreover, unlike AD DS (which installs and 

operates only on Windows Server), AD LDS can be installed and used on both workstation and 
server versions of the Windows operating system. Finally, because it does not supply domain 
services, there is no concept of a client system "joining" a collection of AD LDS servers (an AD LDS 
forest). 

In both AD DS and AD LDS, the directory service provides a data store for objects that typically is 
distributed across multiple DCs. The DCs interoperate as peers to ensure that a local change to an 

object replicates correctly across all peer DCs. AD DS, however, uniquely provides integrated 
authentication and authorization services to security principals operating within its security realm. 
The most significant content difference between AD LDS and AD DS is that AD LDS does not host 
domain naming contexts (domain NCs). 

[MS-ADTS] contains many more details on AD DS and AD LDS forests, as well as AD DS domains. 
[MS-WSO] contains further information about how clients are affected by being part of a domain; for 

a list of affected protocols, see [MS-WSO] section 4.2. 

3.5   Domains and Forests 

Domains can be linked together in a number of ways; such a link is termed a trust. A single domain 
that is not linked to any other domain is the sole source of authority for all principals within that 

%5bMS-DTYP%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADTS%5d.pdf


 

25 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

domain. Domain trusts, and their arrangements, are again analogous to the cross-realm trust as 
specified in Kerberos ([RFC4120] section 1.2). How the linking of domains is accomplished is an 

implementation-specific, server-to-server operation outside the scope of this document. 

Domains can be linked in several different ways. Linking domains by establishing a trust relationship 

between the two domains indicates that the domains trust each other to authenticate the identities 
of accounts within each domain. The trust need not be complete; the nature of the trust is an 
administrative decision made by each domain administrator. 

 

Figure 1: Domain trust relationship 

Given two domains, A and B, a variety of possible trust relationships can be established. In the 

preceding diagram, the direction of the arrows indicates that B can trust principals authenticated by 
A, but A does not trust B. In this case, the direction of the trust is from A to B. Similarly, B could 

trust A, and accept principals from A's domain, but A might not trust B. And, of course, A and B 
might have mutual trust, where both sides trust the other side to authenticate principals. 

Domains, through their Domain Name System (DNS) names, can be linked to establish trust that 
mirrors the hierarchy expressed in their names. For example, child1.example.com and 
child2.example.com would be configured to trust example.com, but neither would trust each other 
directly. Domains linked this way are termed trees. Two or more trees can be linked together to 

create a forest, where the trust is established at the root of each tree. 

 

Figure 2: Linked domains creating a forest 

Domain trust can be established without a forest. Any two domains can be arbitrarily linked together 
through a trust. For Windows NT 4.0-style domains, all trusts are established this way. 

http://go.microsoft.com/fwlink/?LinkId=90458


 

26 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

4   Common Task Information 

This section contains specifications that are common to many of the other tasks described in this 
document. 

4.1   System Context 

The following sections describe system environment elements, assumptions, and preconditions that 
are common to all the Domain Interactions System Defined Tasks. 

4.1.1   System Environment 

The Domain Interactions system forms the framework that other systems leverage in their 
environments. As such, this system requires comparatively little in terms of services available for 
use, since its purpose is to create a useful environment for other scenarios. Services that this 
system requires from its environment include the following: 

Network Infrastructure. This system requires that a viable network system is available. This 
includes a networked environment that supports TCP/IP and UDP/IP. Additionally, a name resolution 

system must be available for use by both domain controller server and Domain Members. The 
name resolution system must support Domain Name System (DNS) form if the domain is to support 
AD-style domain functionality, and NetBIOS form if the domain is to support Windows NT 4.0-style 
domain functionality. The system has no requirement for the management model of the DNS 
namespace, although some form of dynamic DNS will likely be easier to manage. 

Coexistence. As discussed in section 3.1.1, any given domain on a network must be uniquely 
named. There is no architectural limit to the number of domains possible on a network. 

Even at this relatively high level, the domain interactions system is a complex aggregation. The 
relationships among the different systems involved need to be represented first. Once that is 
established, the interrelations among major components will be far more understandable. 

4.1.2   System Assumptions and Preconditions 

The heart of the domain interaction system is a set of authentication protocols that form the base 

upon which many other systems are built. As such, it has very little in the way of assumptions or 
preconditions. 

4.1.2.1   Client 

The client assumes basic network connectivity and the availability of basic network infrastructure 
services such as Domain Name System (DNS). 

Prior to being associated with a domain, there are no other preconditions of note. Once a client has 

been associated with a domain, it has the assumption that the domain controller also has an entry in 
its directory corresponding to the client. Should this assumption be proven wrong, the system (from 
the client's perspective) becomes unusable until the association is reestablished. 

4.1.2.2   Domain Controller Server 

The domain controller publishes its name and capabilities with a DNS infrastructure and/or a 
NetBIOS infrastructure ([MS-ADTS] sections 6.3.2 and 6.3.4). See section 5 (Locating a Domain 

Controller) for additional details on how the client consumes the DNS records registered by the 
domain controller. See [MS-ADOD] for additional details on domain controllers. 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADOD%5d.pdf


 

27 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

As noted earlier, clients treat all domain controller instances as equivalent. The domain controller 
has to ensure that it is synchronized with its peer domain controllers, if any are supported in the 

implementation, through implementation-specific means. 

4.2   Common System Relationships 

4.2.1   Black Box Relationship Diagrams 

The following figure illustrates two possible distributed configurations for the Domain Interactions 
System, spanning several computers and services in a distributed network. 

 

Figure 3: Domain Interactions Distributed System 

In this diagram, the Domain Interactions System spans the Domain Clients and the Domain 
Controller Implementation, but also interacts with the independent infrastructure services. The 
infrastructure services include services such as name resolution (DNS, WINS) and network 
maintenance services (routers). The Domain Controller Implementation uses such services to make 
itself available to its clients. 

The clients are shown in two different configurations labeled A and B. In the configuration A, the 
Domain Client (Workstation) is simply the consumer of the services offered by the domain controller 

implementation. An example of a domain service is interactive logon to enable a user to logon 
interactively into the Domain Client (Workstation). 

Configuration B has two clients of the domain, one labeled Domain Client (Workstation) and the 
other tagged Domain Client (Server). In this configuration, the Domain Client (Workstation) is 
consuming services offered by the Domain Client (Server), as indicated by the double-arrowed line. 
Regardless of the specifics of those services, both parties are relying on the Domain Controller 
Implementation for services that enable those of the server itself. These services typically would be 

supporting authentication or authorization. 



 

28 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

4.2.2   Common System Dependencies 

Due to the nature of the Domain Interaction System being distributed among many computers for 
different, but related, purposes, enumerating the dependencies of the system is also complex. The 

coarse diagram in the following figure serves as a very high-level description of how the 
dependencies among the components can be visualized. 

 

Figure 4: Dependencies between Domain Interaction Distributed System and other 

components 

In this diagram, the dependencies of the system are very symmetrical between the domain client 
and the domain controller server. Both the domain client and domain controller server rely upon 
infrastructure servers such as DNS, and leverage those servers for locating each other 
(rendezvous). During this rendezvous process, the domain controller server publishes its name and 
the domain client locates the domain controller server through DNS. The details of this rendezvous 
process are described in section 5.  

In addition to service location, the rendezvous process between a domain client and a domain server 
relies upon authentication and authorization information. The domain controller server, for example, 
will leverage the authorization information that it contains for controlling access to its resources. A 
more complete description of this authentication and authorization information can be found in [MS-
AUTHSO] and related documents. 

4.2.3   Common System Influences 

Because the Domain Interactions System specifies how systems and computers function within a 
domain environment, any system or protocol that can operate within a domain, or has a mode of 
operation within a domain, is influenced by this system. However, there are a few Protocol Family 
and Defined Task systems where the influence is best called out more explicitly: 

Active Directory System ([MS-ADOD]): has a more in-depth description of how the directory is 
structured, and how LDAP operations can be made.  

Authentication System ([MS-AUTHSO]): specifies how other protocols take advantage of the 
authentication protocols such as NTLM or Kerberos to secure their communications, and the 
authentication services that support the client to server communication. [MS-AUTHSO] depends on 
DIS for specifying how those protocols are used in a domain context, to authenticate clients to 
servers when both are members of a domain. 

%5bMS-ADOD%5d.pdf


 

29 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

A series of families leverage the domain controller as the source of identity and authorization 
information for the domain. These include: 

Certificate Services System ([MS-CASO]): specifies how the certificate authority leverages the 
domain infrastructure to manage certificate distribution and enrollment, and makes authorization 

decisions based on information associated with the accounts in the domain. 

Rights Management System ([MS-RMSO]): specifies how content can be protected against offline 
access, based on authorization information from the directory. 

Transaction Processing System ([MS-TPSO]): specifies how transaction processing can be 
synchronized across multiple machines, based in part on authentication and authorization services 
received from the domain. 

File Services ([MS-FSSO]): specifies how file servers present a unified view of files and other 

resources, and rely upon [MS-AUTHSO] and DIS for authentication when the file server is part of a 
domain. 

Print Services ([MS-PSSO]): specifies how print servers can render content, and rely upon DIS for 
receiving authorization information about print operations when the print server is part of a domain. 

Message Queuing Services ([MS-MQSO]): specifies how operations can be queued, and relies 
upon DIS for authentication and authorization when the queue participants are part of a domain. 

Network Policy and Access Services ([MS-NAPSO]): specifies how machines can be examined 
for access to a network. The machines have to be members of a domain in order to authenticate to 
the NAP servers. 

Finally, the Domain Interactions system forms the basis for managing resources within the domain. 
Thus it influence the following families as well: 

Windows Management Services System Overview ([MS-WMSO]): specifies the set of protocols 
used to manage servers remotely; when those servers are part of a domain, this relies upon DIS for 

authentication and authorization services. 

Group Policy System Overview ([MS-GPSO]): specifies how domain clients can retrieve group 
policy information from the domain controller, which is based on the group memberships of the 
domain accounts, as well as the domain account's location in the LDAP directory structure. 

Windows Server Update Services ([MS-WSUSO]): specifies how different machines in a domain 
can have different update policies for patch management, which relies upon DIS to specify the 
domain authorization information. 

4.3   Common System Architecture 

The following sections describe the abstract client-side and domain-controller side data model 
elements that apply to all Domain Interactions System Defined Tasks. 

4.3.1   Common Abstract Data Model 

This section describes common state established, used, and maintained by processing rules of 
Domain Interactions Services Defined Tasks. State can be volatile or persisted. State can pertain to 
one, some, or all instances of the task. The overall organization of the data elements, with their 
names, is the Abstract Data Model. It is intended to facilitate the reader's conceptual understanding 
of the specification. While a task's processing rules might depend upon associations established by 
the structure of its Abstract Data Model, such association can be achieved in other ways. 



 

30 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Implementations can depart from this model so long as their external behavior remains consistent 
with that described in this document. 

The Abstract Data Model (ADM) is best described by separating the client of the domain from the 
domain controller. The client's model is fairly simple; the domain controller's model is somewhat 

more complex. 

4.3.1.1   Client Data Model 

The client's data model is fairly simple. The client must maintain the following in a persistent store. 
The following elements must be shared in a read-only mode with other protocols on the client unless 
otherwise specified, and are shared in a read-write mode with client administrators. For information 
about other protocols that refer to these ADM elements, see [MS-ADMS] section 6. 

DomainName (Public): The client MUST know the name of the domain to which it belongs. The 
DomainName is further defined as DomainName.FQDN (Public), indicating the fully qualified 
Domain Name System (DNS) domain name, and DomainName.NetBIOS (Public), indicating the 
NetBIOS name of the domain. Whether DomainName.FQDN is present depends on configuration. 

As noted earlier, Windows NT 4.0-style domains do not have DNS names, so the 
DomainName.FQDN need not be established in that case. For AD-style domains, this is the flat 

NetBIOS name of the domain. 

When the client is not joined to a domain, DomainName.FQDN is set to NULL and 
DomainName.NetBIOS is set to the NetBIOS name of the workgroup the client is associated with. 

DomainSid (Public): The client MUST preserve the security identifier (SID) of the domain to which 
it belongs. This SID is used later as part of the authorization process. If the client has never been 
joined to a domain, or was previously joined then unjoined, this value is empty. 

DomainGuid (Public): The client MUST preserve the GUID identifier of the domain to which it 

belongs. If the client has never been joined to a domain, or was previously joined then unjoined, 
this value is empty. 

ForestNameFQDN (Public): The client MUST preserve the canonical fully qualified DNS name of 

the forest containing DomainName. If the client has never been joined to a domain, or was 
previously joined then unjoined, this value is empty. 

SiteName (Public): The client can retain the site that it has determined either through 
administrative configuration or dynamic discovery. Preserving the site name allows the client to use 

the site in the process of finding a "near" domain controller (DC) during the location process. 
However, for clients that are mobile and may shift sites frequently (for example, a business traveler 
using a laptop), preserving the site may not help, or may require additional information such as 
network awareness that are outside the scope of this document. Client implementations SHOULD 
incorporate site awareness and preserve the name of the site.<3> 

ClientName (Public): The client MUST know the name of itself, as the domain knows it. This 

corresponds to the SAMAccountName attribute of the object in the directory. The ClientName 
may be populated from configuration (for example, a service or machine name), or from human 
interaction. 

ComputerName (Public): The client of the domain MUST know the name of the computer upon 
which it is executing, in a form that can be resolved by the underlying network infrastructure. The 
ComputerName element is conceptually the same as the "hostname" element used in other 
standards; specifically, the name by which the computer can be referenced. The ComputerName 

element has two sub elements, ComputerName.FQDN (Public) and ComputerName.NetBIOS 
(Public). The FQDN sub element refers to the canonical fully qualified DNS name of the computer, 

%5bMS-ADMS%5d.pdf
%5bMS-GLOS%5d.pdf


 

31 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

and MUST NOT be an alias (such as a CNAME in DNS) to another name. The NetBIOS element is the 
NetBIOS name of the computer. Either, or both, of these elements may be present, depending on 

configuration. 

The ComputerName.NetBIOS element is typically used for holding the NetBIOS name of the 

computer, and it MUST be a Unicode UTF-8 string [RFC3629]. The NetBIOS name of the computer is 
typically the same as the unqualified name of the computer (for an example, see use of "simple-
name" in [RFC819]), as long as the name fits within the NetBIOS naming constraints. If the simple 
name does not meet the requirements of NetBIOS host names, then the transformation from simple 
name to NetBIOS name is an implementation-specific detail. A host participating in this system is 
not required to implement NetBIOS to interact correctly with other services in the system, although 
the system does require the use of a flat, unqualified name for the computer or host.  For clarity, 

that will still be referred to as the NetBIOS name, even if the implementation does not use NetBIOS. 

Password (Public): The client must know the password credentials associated with the account 
object for ClientName in the directory. 

These elements will provide the basis for how the client invokes the protocols used when 

communicating with the DC. They must be persisted in some implementation-dependent fashion 
when the client of the domain is not interactive. That is, if the domain client is acting on behalf of a 

user, it is possible to prompt the user for this information. If the domain client is acting on behalf of 
a service or set of services (for example, a server), then the implementation must store these 
values in a way that allows the domain client to retrieve these values. 

TrustedDomains: When the domain client is interacting with a DC, it builds a list of domains 
trusted by the client's DC. This list may be empty if there are no other domains that are trusted. 
This can be modeled as a simple array, where each element of the array has a domain name, as 
well as a flag indicating whether the domain is an AD-style domain or a Windows NT 4.0-style 

domain. The domain name is further broken down into a flat NetBIOS name, 
DomainName.NetBIOS, and a fully qualified DNS name, DomainName.FQDN. Either, but not 
both, of these elements may be empty, based on the type of domain represented by this trust. 

4.3.1.2   Interaction with the [MS-LSAD] Data Model 

If the client is running the [MS-LSAD] protocol, the following ADM elements (presented in section 
4.3.1.1) MUST be considered to be owned by the [MS-LSAD] protocol: 

DomainName.NetBIOS 

DomainName.FQDN 

DomainSid 

DomainGuid 

ForestNameFQDN 

Furthermore, when the client is running the [MS-LSAD] protocol, access to these [MS-LSAD] ADM 
elements MUST be implemented as described in [MS-LSAD] section 3.1.1.10. 

4.3.2   Domain Join State 

[MS-ADTS] section 6.4 describes the domain-joined state for a client. [MS-DISO] specifies in more 
detail the processing logic through which this state is achieved. The client may be either joined to a 

domain, or not joined to a domain; the client can only be a member of one domain at a time. 
Transitions between these states can be accomplished as shown in the following diagram: 

http://go.microsoft.com/fwlink/?LinkId=90439
http://go.microsoft.com/fwlink/?LinkId=90495
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-ADTS%5d.pdf


 

32 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 5: Domain join state 

4.4   Overview of the Interactions in the System 

There are a number of relationships among the protocols that make up the domain interactions 
system. In addition to the general theme of this document in dividing the descriptions between the 
domain client and the domain controller, it is also useful in some areas to distinguish between the 
roles of the domain client systems. Consider the following figure as a broad map to lay the 
groundwork for the interactions and relationships between domain clients and domain servers. 



 

33 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 6: Domain interaction 

In this figure, the boxes on the left each represent domain clients, but in different roles. The top box 
represents a client workstation that is associated with the domain. The bottom box represents a 

server of some other set of services, but still a client of the domain services (for example, a file 
server). Each of these clients has a set of relationships with the domain controller, represented by 

the solid arrows. The details of the relationships between domain members and domain 
controllers are discussed in section 4.5. The communication between the client workstation and the 
server is not covered in this document, but rather is specific to the services that the server is 
offering. Communication related to domain interactions between all three machines in the diagram 
will often require authentication, which is covered in more detail in [MS-AUTHSO]. 

4.5   Common Relationships in Domain Client Workstation and Server Roles 

Even with the taxonomy outlined in the preceding diagram, there is a substantial amount of 
commonality in being a client of the domain controller. This section describes several simple views 
of the relationships that are common to both the workstation and server roles. 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf


 

34 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 7: Protocol transport dependencies 

The preceding figure shows a view into the transport dependencies of some of the protocols in this 

family. The darker gray boxes are the transport protocols that form the basis for all communication. 
For example, this shows that the Locator protocol that is used for locating domain controllers 
depends on the ability to send UDP packets directly, as well as using NetBIOS for name resolution 
and broadcast. This diagram is not exhaustive, as it shows only some of the common elements. 

Section 6, "Joining a Domain using Predefined Account", depends on SMB (may be [MS-CIFS], [MS-
SMB], or [MS-SMB2]), [MS-NRPC], [MS-LSAD], [MS-DRSR], LDAP (as further specified in the LDAP-

related parts of [MS-ADTS]), and [MS-SAMR]. 

Section 7, "Joining a Computer by Creating an Account via SAMR", depends on SMB (may be [MS-
CIFS], [MS-SMB], or [MS-SMB2]), [MS-NRPC], [MS-LSAD], [MS-DRSR], and [MS-SAMR]. 

Section 8, "Joining a Computer by Creating an Account via LDAP", depends on [MS-NRPC], [MS-
DRSR], LDAP (as further specified in the LDAP-related parts of [MS-ADTS]), and [MS-SAMR]. 

Section 9, "Removing a Domain Member", depends on SMB (may be either [MS-CIFS], [MS-SMB], 
or [MS-SMB2]), [MS-NRPC], and [MS-SAMR]. 

See individual sections for specifics on the above dependencies. 

4.5.1   Workstation to Domain Controller 

In addition to the common protocol stack and patterns discussed above, the workstation, or 

initiator, role adds certain other views. As above, the following figure shows the additional transport 
dependencies in the workstation role. 

%5bMS-CIFS%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-DRSR%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-SAMR%5d.pdf


 

35 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 8: Additional transport dependencies in the workstation role 

Here, the Kerberos protocol is shown using both TCP/IP and UDP/IP. The NetBIOS protocol has been 
removed for clarity. 

For a domain member that is acting in the workstation or initiator role, the majority of the 
functionality is captured in the common case above. The primary difference is that the domain client 
will use Kerberos for authentication. The same pattern as noted above, where the locator finds a 
domain controller with a KDC and updates the ADM DomainController element, is used in this case 

as well. 

4.5.2   Server to Domain Controller 

The server role adds a different aspect because the server (as a client of the domain controller) is 
bound to forward requests relating to authentication and authorization to the domain controller for 

processing. These requests ride on top of the [MS-NRPC]: Netlogon Remote Protocol Specification, 
as shown in the following figure. 

%5bMS-NRPC%5d.pdf


 

36 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 9: Server requesting authentication and authorization with Netlogon RPC 

In this instance, the server can authenticate its client and obtain authorization information from the 
domain controller by forwarding authentication information (received from the client) to a domain 
controller using one of the four protocols depicted in the preceding figure. Which protocol the server 

will use for communication with the domain controller is determined by the authentication protocol 
between the client and the server as follows. 

Protocol between client and server Protocol between server and domain controller 

Remote Certificate Mapping Protocol Remote Certificate Mapping Protocol 

Kerberos Authentication Protocol Kerberos PAC Validation 

NTLM Authentication Protocol NTLM Logon 

Digest Authentication Protocol Digest Validation 

For further information about the use of these four protocols, refer to the following documents: 

Remote Certificate Mapping Protocol [MS-RCMP], Kerberos PAC Validation [MS-APDS], NTLM Logon 
[MS-APDS], Digest Validation [MS-APDS]. See section 6 Appendix A Product Behavior of each of the 

referred documents for a detailed accounting of the protocols supported by different versions of 
Windows.  

%5bMS-RCMP%5d.pdf
%5bMS-APDS%5d.pdf


 

37 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

4.5.3   Domain Controller and Domain Client Functional Relationships 

This section covers the relationships among protocols in more detail. As has been noted earlier, the 
complexity of the system is such that a coarser overview diagram helps set the stage for more 

detailed diagrams later. While it is often useful to show the entire system, this portion is broken into 
the server (domain controller) and client views. 

4.5.3.1   Domain Controllers 

The domain controller exposes the directory through sets of services. The aggregation of these 
services comprises the "surface" of the domain controller. Each of these groupings is detailed more 
later in this section. It is important to note that the majority of the state is preserved in the 

directory database, which is implementation-dependent. 

The elements of the ADM for the domain controller side of the domain system are all logically 
persisted in the database that stores the domain information. 

 

Figure 10: Service interacting with directory database for domain information 

4.5.3.1.1   Management Services 

Management services are services that are invoked to manipulate the state of the directory, such as 
adding, deleting, or modifying objects within the directory. For information about using the 
management services, see [MS-ADOD] and [MS-ADTS]. Conceptually, the management interfaces 
align as shown in the following diagram. 

%5bMS-ADOD%5d.pdf
%5bMS-ADTS%5d.pdf


 

38 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Note These interfaces require and use authentication services; however, the services were omitted 
from this diagram in order to focus on the larger scale view of the system. 

 

Figure 11: Management services between the domain client and the directory database 

LDAP ([MS-ADTS]). LDAP is the primary method of manipulating objects in an AD-style directory. 

Security Account Manager (SAM) Remote Protocol ([MS-SAMR]). The SAMR RPC protocol is a 

legacy RPC interface from Windows NT 4.0-style domain implementations. It can only manipulate 

a subset of the objects that are present in an AD-style domain, but MUST be present for full 
support of clients. This RPC interface is used primarily over TCP/IP, as well as SMB Named Pipes. 

Domain Replication Services RPC ([MS-DRSR]). A subset of this RPC interface is used by clients to 
translate names of objects in the directory to different formats, and to manipulate the names of 
certain objects. 

4.5.3.1.2   Identity, Authentication, and Authorization 

The Identity, Authentication, and Authorization, or IA&A, service group are the services directly 
related to the identification, authentication, and authorization of principals from the directory. 
Identity stems from the existence of principals in the domain. Authentication proves the identity of 
the principal. Through group membership information maintained by the directory, authorization 
information can be derived and returned to the client of the domain. 

%5bMS-SAMR%5d.pdf
%5bMS-DRSR%5d.pdf


 

39 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 12: IA&A services between the domain client and the directory database 

This figure shows the Kerberos protocol stack and the Netlogon stack, and their relationship to the 
clients and the domain directory. The Netlogon RPC interface in turn provides a channel for other 
authentication protocols to execute their authentication, authorization, or other activities at the 
domain controller. Here, those additional protocols are shown on top of the Netlogon stack. 

Kerberos ([MS-KILE], [RFC4120], etc.): Kerberos is the primary authentication protocol for AD-

style domains. The Kerberos Key Distribution Center (KDC) authenticates principals based on the 

Kerberos protocol, using the directory as the back-end store for account information. 

Netlogon RPC ([MS-NRPC]): Netlogon RPC serves as the general channel by which a client of the 

domain connects to a domain controller for the purposes of authentication, authorization, or 
related security purposes. 

NTLM/Netlogon ([MS-NRPC], [MS-NLMP]): NTLM is the secondary authentication protocol for AD-

style domains, and the only authentication protocol for Windows NT 4.0-style domains. NTLM 
authentication is forwarded to a domain controller over the Netlogon RPC interface, allowing 
servers to authenticate clients without having a complete account store local to the server. As in 
Kerberos, the directory is used as the account store for authentication. 

Remote Certificate Mapping Protocol/Netlogon ([MS-RCMP]): Secure Sockets Layer (SSL) and 

Transport Layer Security (TLS) are authentication protocols based on the use of X.509 public key 
certificates. The association between the certificate and an account is done via the Certificate 

Mapping protocol, which travels over the Netlogon RPC protocol. The directory is used as the 
account store. 

Digest Validation ([RFC2617], [RFC2831], [MS-DPSP], [MS-APDS]): Digest authentication is an 

authentication protocol used primarily in HTTP authentication, but occasionally in LDAP-accessible 
directories as well. Digest authentication is similar to the NTLM [MS-NLMP] protocol, and 
validation can take place at the domain controller instead of on the domain client that is handling 

the server end of the Digest authentication. In much the same way as NTLM over Netlogon is 
handled, the Digest authentication can be forwarded to the domain controller over the Netlogon 
channel. 

%5bMS-KILE%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90458
%5bMS-NRPC%5d.pdf
%5bMS-NLMP%5d.pdf
%5bMS-RCMP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90373
http://go.microsoft.com/fwlink/?LinkId=90387
%5bMS-DPSP%5d.pdf
%5bMS-APDS%5d.pdf


 

40 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Kerberos PAC Validation ([MS-PAC], [MS-APDS]): The Privilege Attribute Certificate or PAC that is 

carried in the Kerberos tickets is documented in [MS-PAC]. The PAC is digitally signed by the 

issuing KDC using a method covered in [MS-PAC] section 2.8.1. A domain member can validate 

the signature by forwarding the PAC to the domain controller, again over the Netlogon RPC 
channel. From the user's PAC, Windows identifies the user's principal ID and group memberships 
and populates the user's security token with that information. The information is subsequently 
used in access control decisions. 

4.5.3.1.3   Support Services 

Domain controllers, due to their availability and centrality, may host additional services that are not 

critical to the functioning of the domain. Windows Clients will look by default to domain controllers 
to host these services, and may require additional configuration for implementations that choose not 
to produce them. These include: 

Simple Network Time Protocols (SNTP): Domain Controllers can offer time services to clients of 

the domain through SNTP [RFC1769]. This can be convenient since Kerberos, among other 

protocols, requires clocks to be reasonably closely synchronized. The extensions to SNTP for 

domains, [MS-SNTP], allow the time synchronization messages to be signed using the password 
from the account in the directory. 

Domain Location: While this is not, strictly speaking, a protocol, the locator functionality as 

specified in [MS-ADTS] section 6.3 shows what information a domain controller must publish as 
well as what steps a domain client should take to locate a domain controller. 

4.5.3.1.4   Remote File Services 

Domain controllers must also act as file servers for several reasons. First, several of the protocols 
above run over named pipes, which is a construct of SMB/CIFS. Second, as part of the logon 
process, clients may be returned a logon script to be executed; that script is by default relative to 
the domain controller. Third, group policy is implemented, in large part, by accessing files from the 
domain controller. Protocols include: 

SMB/CIFS (as specified in [MS-SMB2], [MS-SMB], and [MS-CIFS]): SMB/CIFS is the primary 

protocol used for file sharing from the domain controller, and for implementing named pipes for 
RPC. 

The client and the domain controller will negotiate the use of [MS-CIFS], [MS-SMB], or [MS-
SMB2] (see [MS-CIFS] section 3.4.4.7 for details). The Tasks in this document do not require 
that any specific version of the SMB protocol be negotiated, and the term "SMB/CIFS" is used as 
a generic reference to any of these three protocols. 

DFS ([MS-DFSC]): Domain controllers can act as DFS roots in certain scenarios. 

It should be clear that the Management and IA&A services are providing multiple views into a single 
database of objects, as noted in the ADM above. An implementation of the domain controller 
services MUST make all views from different protocols onto the database consistent. 

4.5.3.2   Domain Client 

The domain client comprises a matching set of interfaces, but a substantively different 

interconnection among the protocols. On the client, information that results from one protocol is 
often used to seed another protocol's initial state. These interrelations are described later in section 
4.7.1. 

%5bMS-PAC%5d.pdf
%5bMS-PAC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90289
%5bMS-SNTP%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-DFSC%5d.pdf


 

41 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

4.6   Common Architectural Details 

4.7   Architectural Details 

As per earlier sections of this document, it is generally useful to view this system in two ways: as 
the client of the domain services, and as the domain controller itself. 

4.7.1   Domain Client Architecture 

The domain client is largely focused on making requests of the domain controller. The general state 
model of the client is as follows. 

 

Figure 13: Client state model 

Note that this does not attempt to represent the states of individual protocols in the family. This is a 

very high-level view of the state of the system. In this diagram, the solid lines represent state 
transition (detailed as follows), and the dashed lines represent transitions to the end state, where 
the client is shut down. Shutdown may take place for any number of reasons, from user desire to 
implementation-dependent failure modes. Transitions to the shutdown state are included for 
completeness, but are not detailed. 

There are three main states for the domain client. The first state is "Locate Domain Controller (A)" 
where the client is using the Locating a Domain Controller task (section 5) in order to locate the 

domain controller. Upon successful identification of a domain controller, the system transitions to 
the "Known, Idle (B)" state. Until the domain controller is located, the system cannot move out of 
the "Locate Domain Controller" state. 

Once the system has moved to the "Known, Idle" state, this indicates that the domain controller is 
known, and that requests of the domain controller can be made. When the system makes a request 
to the domain controller, the system moves to the "Interaction with Domain Controller pending (C)" 

state. In this state, the system has made a request, and is now waiting for the domain controller to 

reply. This state has two main exit paths. The first is that the request has completed successfully. 
Note that this does not imply that the request was granted, merely that the request was answered. 
Once the answer has been obtained, the system moves back to the "Known, Idle" state. Since the 
request was answered, the domain controller is still valid. 



 

42 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Should no answer come back from the domain controller, then the request is canceled, and the state 
of the system reset to "Locate Domain Controller". This transition indicates that no domain controller 

is currently available, and that the system must wait until a domain controller can be found again. 

As noted above, the client architecture is somewhat complementary to that of the domain controller. 

The groupings of protocols are aligned, but the shared state between the groups and protocols is 
different. This shared state is captured in the following figure. 

 

Figure 14: Shared state between groups and protocols 

In this diagram, the persistent portions of the ADM are in the upper ADM box, and the transient 
portions are in the lower box. Updates are expressed as the dashed straight line, and simple 
consumption of the element is a solid straight line. Encapsulation of other services is represented 

with an arc. 

4.7.1.1   Locator 

The Locating a Domain Controller task (section 5) is responsible for locating a suitable domain 

controller. 

The locator performs a name lookup with the DNS infrastructure based on the DNS domain name to 
identify a list of candidate addresses for domain controllers. Subsequently, the LDAP ping 

mechanism ([MS-ADTS] section 6.3.3) is used to determine if a domain controller from that list is an 
appropriate domain controller to use (see section 5.4.5.3 for details). Alternatively, if only the 
NetBIOS domain name is known, a MAILSLOT Ping ([MS-ADTS] section 6.3.4) mechanism is used to 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

43 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

locate an appropriate domain controller using the Remote Mailslot Protocol (see section 5.4.5.5 for 
details). 

4.7.1.2   Time Service 

The time service is an excellent example of how a simple protocol such as SNTP is integrated into 
the domain functionality. The domain client has an SNTP client locally that is tasked with managing 
the system clock. It is important that the clock of the domain client be reasonably closely 
synchronized with the domain controller's clock. The Kerberos protocol, for example, requires that 
the clocks be synchronized to within five minutes of each other. 

 

Figure 15: Example protocol utilizing domain client ADM 

This SNTP client on the domain client is configured, by default, to use a domain controller as its 
source of time. The SNTP client invokes the locator to identify a candidate domain controller. The 
time service also uses the RID of the client computer's account in the domain as the Key Identifier 
in the client NTP request (see [MS-SNTP] section 2.2.1). The SNTP server can use this RID to look 

up the account for the domain client in the directory. From the directory, the password associated 
with this account can be used to create a cryptographic check sum of the time stamp for return to 
the client ([MS-SNTP] section 2.2.2). The SNTP client on the domain client can then verify this 

checksum, based on the Password element of the ADM. 

This example shows how a protocol leverages the same ADM elements as part of the operation of 
the domain client. 

4.7.1.3   Authentication 

The Identity, Authentication and Authorization set of protocols consumes ClientName, Password, and 
DomainName, and makes use of DomainController.Address. However, this set of protocols is 
typically used via encapsulation, where, by way of example, SMB/CIFS within the Remote File 
Service group would make an authenticated connection to a server, or the LDAP binding to the 
domain controller would be authenticated. These cases are covered in greater detail in [MS-

AUTHSO]. 

The IA&A group is used independently of other encapsulating protocols when servicing an 
authentication operation such as interactive logon. 

4.7.2   Domain Controller Architecture 

The majority of the interactions with the domain controller are transitory, in that the client selects a 
task, binds to the protocol group on the domain controller, performs the task, then unbinds. In 

those cases, the domain controller server functions much as the server in any other task, 
responding to the varied requests of the clients. 

%5bMS-SNTP%5d.pdf
%5bMS-SNTP%5d.pdf


 

44 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

The exception to this is the use of the Netlogon RPC interface [MS-NRPC]. There, the purpose of the 
interface is to provide an ongoing connection to the domain controller for the purpose of 

authentication and authorization. The domain client will establish a connection over Netlogon RPC 
when necessary (typically, the first time it needs to authenticate a connection), and keep that 

connection so long as the client and the domain controller server are both running. 

4.8   Common Failure Scenarios 

The Tasks in this document specify a series of actions that effect the necessary state changes such 
that the client is joined to the domain. These changes include those that are local to the client, and 
those that occur in the domain (that is, those that create or modify a computer account object on a 
domain controller (DC)). In general, failure of any one particular action must cause failure of the 

Task. Exceptions to this principle are specified where necessary (for example, failed updates to the 
[MS-SNTP] protocol during join or unjoin processing are ignored). 

While unlikely, the Tasks in this document may fail when making local (client) state changes. Such 
failures may occur due to reasons such as resource starvation. The Tasks in this document do not 

attempt to remedy these failure conditions; the only recourse is for the Task caller to re-execute the 
Task. 

When communicating with a remote machine such as a domain controller, some obvious potential 
failure conditions include lack of network connectivity, or insufficient security privileges to create or 
modify a computer account object. The Tasks in this document do not attempt to remedy these 
failure conditions; the only recourse is for the Task caller to re-execute the task. When a Task is re-
executed, no assumptions should be made about the state of a computer account object in the 
domain. 

All Tasks make reasonable efforts in the face of failure to restore local client state to the original 

starting state. If those efforts fail, administrator intervention (outside the scope of the Task) may be 
necessary. Similarly, if a Task successfully creates or modifies a computer account object in the 
domain but then fails in a later step, the Task will make reasonable efforts to either disable or delete 
the computer account object. Failure to disable or delete the computer account object in that case 
may require domain administrator intervention (outside the scope of the Task) to make the changes 

manually. 

%5bMS-NRPC%5d.pdf
%5bMS-SNTP%5d.pdf


 

45 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

5   Locating a Domain Controller 

This section describes the Locating a Domain Controller task. This task is used by a client in order to 
access resources in the domain. 

Locating a domain controller is the first step in the process of a client joining a domain. Therefore, 
all subsequent tasks defined in this document depend on this task. 

5.1   Task Overview 

5.1.1   Task Purpose 

The purpose of the Locating a Domain Controller task is to enable a client to locate a domain 
controller within a domain or forest using a DNS or NetBIOS domain name. 

5.1.2   Task Applicability 

This task is applicable to clients that need to locate a domain controller (DC) in order to access 
resources in the domain. 

5.1.3   Task Use Cases 

The following sections describe the stakeholders and interest summaries. 

5.1.3.1   Stakeholders and Interests Summary 

Client User: The end user of the system accessing resources within the domain. 

Client Application: An application running on a Client Computer that wants to access resources 

within the domain. 

Client Computer: A computer that needs to locate a domain controller in order to access domain 

resources. 

Domain Controller: The domain controller is a computer providing domain services to domain 
clients. In order for a domain controller to serve clients, there must be a mechanism for the clients 
to locate it. 

NetBIOS Infrastructure: An infrastructure that supports NetBIOS name resolution ([RFC1001], 

[RFC1002]). 

DNS Infrastructure: An infrastructure that provides DNS name resolution. 

This task relies on at least one of the previously listed infrastructures to be available to discover 
domain controllers that could satisfy the requested capabilities. 

5.1.3.2   Supporting Actors and Task Interests Summary 

This task is primarily invoked by the DsrGetDcName, DsrGetDcNameEx, and 

DsrGetDcNameEx2 methods of the Netlogon Remote Protocol ([MS-NRPC] sections 3.5.4.3.1, 
3.5.4.3.2, and 3.5.4.3.3). Domain clients use one of these methods to locate a domain controller in 
order to access resources in the domain. 

http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf


 

46 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

In addition, this task is invoked directly by the tasks specified in sections 6, 7, and 8 (where the 
client is not yet joined to the domain and the Netlogon Remote Protocol is therefore not initialized) 

to locate a domain controller. 

5.1.3.3   Use Case Diagrams 

The following diagram shows the use case of a client attempting to locate a domain controller: 

 

Figure 16: Locating a domain controller - domain client 

5.1.3.4   Locating a Domain Controller — Client Application 

Goal: Locate a domain controller (DC) in order to perform domain-oriented actions as illustrated in 
the use case figure. 

Context of use: When a Client Application needs to access resources in a domain, locating a DC is 
the first step in the process. 

Direct Actor: The direct actor is the Client Application that wants to access resources within the 
domain. 

Primary Actor: The primary actor is the Client User. 

Supporting Actors: NetBIOS Infrastructure and DNS Infrastructure, as specified in section 5.1.3.1. 

Stakeholders and Interests: All stakeholders specified in section 5.1.3.1. 

Minimal Guarantees: Either a domain controller that meets the criteria specified via the task 
abstract parameters is located and information about the domain controller is provided to the caller 



 

47 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

as described in the task abstract results section (section 5.3.4), or an error is returned indicating 
that a domain controller could not be located. 

Upon failure, the local Client Computer state defined in section 4.3.1.1 is unchanged. 

Success Guarantee: A domain controller that meets the criteria specified by the task abstract 

parameters is located, the task abstract results (see Section 5.3.4) are returned to the caller with 
information about the domain controller. 

Main Success Scenario: 

1. The FQDN(2) of the domain, in which the domain controller is to be located, is available. 

2. The client computer uses the FQDN(2) domain name to query the DNS infrastructure for relevant 
SRV records. 

3. The client computer receives one or more SRV records that match the criteria from the DNS 

server. 

4. The client computer resolves the name of the domain controllers using DNS infrastructure to get 
the IP addresses, and contacts the domain controllers via an LDAP Ping ([MS-ADTS] section 
6.3.3) to determine "liveness" and confirm that the requested capabilities are present. 

5. At least one domain controller that satisfies the client's requirements responds to the client 
computer's ping. 

6. Information about the domain controller is returned to the initiator of the task. 

Extensions/Variations: 

If only the NetBIOS domain name of the domain is available, then the client computer contacts the 
candidate domain controllers via a MAILSLOT ping ([MS-ADTS] section 6.3.5) sent to a NetBIOS 
group name ([MS-MAIL] section 3.1.4) that is registered by domain controllers ([MS-ADTS] section 
6.3.5). 

If at least one domain controller that satisfies the client's requirements responds to the client 

computer's ping, then information about any one of the appropriately responding domain controllers 
is returned to the initiator of the task. 

Otherwise, a domain controller could not be located, and an error is returned to the task initiator 
indicating that a domain controller could not be located. 

5.2   Task Context 

This section describes the relationship between this task and its environment. 

5.2.1   Task Environment 

This task is useful in a domain environment where client computers need to locate a domain 
controller for the purpose of joining a domain, or performing other domain-related operations. The 

task requires that either a DNS infrastructure or a NetBIOS infrastructure ([RFC1001] and 
[RFC1002]) exists where the domain controllers register their information and client computers can 

query the information to be able to locate the domain controllers. 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261


 

48 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

5.2.2   Task Relationships 

This task is the first step toward a client joining a domain. All other tasks in this document are 
reliant on this task being completed successfully. 

5.2.2.1   Black Box Relationship Diagrams 

The following diagram illustrates the client's process in locating a domain to join. Assumptions are 
that the client knows the name of the domain and that the domain is available to be located. The 
client uses the Domain Name System (DNS) to locate the desired domain. 

 

Figure 17: Locating a domain controller – black box relationships 

5.2.2.2   Task Dependencies 

Success of this task relies on domain controllers being present and registering information about 
their capabilities with a DNS and/or NetBIOS infrastructure. Both the domain client and the domain 
controller rely upon the networking infrastructure for their communication. When this task is 
successful, the other tasks included in this document can proceed. 

5.2.2.3   Task Influences 

None. 

5.2.3   Task Assumptions and Preconditions 

This task assumes the following: 



 

49 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

The domain client assumes basic network connectivity and the availability and necessary 

configurations to enable usage of basic network infrastructure services such as a DNS 

infrastructure and/or a NetBIOS Infrastructure. 

If a domain controller responds to the LDAP/Mailslot ping, the domain controller is considered 

"ready" for the capabilities that were listed in the ping response. 

The following conditions are necessary for the success of the task: 

The domain controller publishes its name and capabilities with a DNS infrastructure and/or a 

NetBIOS infrastructure ([MS-ADTS] sections 6.3.2 and 6.3.4). 

5.2.4   Task Versioning and Capability Negotiation 

None. 

5.3   Task Architecture 

5.3.1   Task Architectural Constraints 

This task is triggered by other tasks. Multiple instances of this task can run at the same time. 

5.3.2   Task Abstract Data Model 

This section describes state established, used, and maintained by processing rules of this task. State 
may be volatile or persisted. State may pertain to one, some, or all instances of the task. The task's 
state consists of the values of the named data elements (also called state variables) presented in 
this section. The overall organization of the data elements, with their names, is the Abstract Data 
Model. It is intended to facilitate the reader's conceptual understanding of the specification. While a 

task's processing rules may depend upon associations established by the structure of its Abstract 
Data Model, such association can be achieved in other ways. Implementations may depart from this 
model so long as their external behavior remains consistent with that described in this document. 

The following ADM elements from the common client data model (section 4.3.1.1) are accessed in a 
read-only manner by this task: TrustedDomains, ComputerName, DomainSid. 

The following ADM element from the common client data model is read, and in some cases updated, 
by this task: SiteName. 

The following are the in-memory values used by the task. These values are not persisted. 

Name Type Description 

TaskLocalDnsDomainName string 

(Unicode) 

Contains the FQDN(2) of the domain in which the 

domain controller is to be located.  This element is 

initialized to NULL. 

TaskLocalNetBIOSDomainName string 

(Unicode) 

Contains the NetBIOS name of the domain in which 

the domain controller is to be located.  This element 

is initialized to NULL. 

5.3.3   Task Abstract Parameters 

This section describes data passed to an instance of this task at the time it is invoked or triggered. 
The parameters consist of the values of the named data elements presented in this section. The 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

50 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

organization of a data element, with its names, is an Abstract Parameter. It is intended to facilitate 
the reader's conceptual understanding of the specification. While a task's processing rules may 

depend upon associations established by the structure of its Abstract Parameters, such association 
can be achieved in other ways. Implementations can depart from this abstraction so long as their 

external behavior remains consistent with that described in this document. 

The parameters to this task are as follows: 

Name Type Description Optional 

TaskInputDomainName string 

(Unicode) 

Specifies the NetBIOS or FQDN name of the 

domain for which to locate a domain 

controller. 

Yes 

TaskInputCapabilities integer Specifies the desired characteristics of the 

DC, as specified in DS_FLAGS_OPTIONS 

(see [MS-ADTS] section 6.3.1.2). 

No 

TaskInputAccountName string 

(Unicode) 

Specifies a user or machine account name, 

which the DC located by this task MUST 

have knowledge of. 

Yes 

TaskInputAccountControlBits string 

(Unicode) 

Specifies account control bits (see 

userAccountControl attribute, [MS-ADTS] 

section 2.2.16) of 

TaskInputAccountName. This parameter 

MUST be specified if 

TaskInputAccountName is specified. 

Yes 

5.3.4   Task Abstract Results 

This section describes data returned by an instance of this task to its caller. The results consist of 
the values of the named data elements presented in this section. The organization of a data 

element, with its names, is an Abstract Result. It is intended to facilitate the reader's conceptual 

understanding of the specification. While a task's processing rules may depend upon associations 
established by the structure of its Abstract Results, such association can be achieved in other ways. 
Implementations can depart from this abstraction so long as their external behavior remains 
consistent with that described in this document. 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus integer This task MUST return 0x00000000 on 

success. Error statuses generated by a 

failure during task processing are in 

the Win32 error space (a long data 

type), as specified in [MS-ERREF] 

section 2.2. 

TaskReturnDomainController.Name string Upon successful completion of the task, 

returns the name of the selected 

domain controller. The name can be 

either the FQDN(1) or the NetBIOS 

name. 

TaskReturnDomainController.Address string Upon successful completion of the task, 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ERREF%5d.pdf


 

51 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Name Type Description 

returns the IP address (if available) or 

the NetBIOS name of the selected 

domain controller. 

TaskReturnDomainController.AddressTy

pe 

enum 

(IPAddress,NetBIO

S) 

Upon successful completion of the task, 

returns the type of address returned in 

the 

TaskReturnDomainController.Addre

ss field. 

5.3.5   White-Box Relationships 

 

Figure 18: Locating a domain controller – white-box relationships 



 

52 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

The preceding figure represents the relationships in the Locating a Domain Controller Task 
component. 

The two main subcomponents represented are: Name Resolution and Liveness/Capability 
Verification, which are detailed further in section 5.3.7. 

The Abstract Data Model (ADM) state elements present here (SiteName, TrustedDomains) are 
detailed further in section 5.3.2. The Abstract Parameters present here (TaskInputDomainName, 
TaskInputCapabilities, TaskInputAccountName, and TaskInputAccountControlBits) are 
detailed further in section 5.3.3. 

The main success scenario and extensions are detailed in section 5.3.8, while the failure scenarios 
are described in section 5.3.9. 

Refer to section 5.4.4 for the architectural details, and more specifically refer to 5.4.4.1 for the DNS 

approach, and section 5.4.4.2 for the NetBios approach. Further details about the rule details, 
interactions between the different components in the diagram, as well as the processing sequence 
represented as a flowchart, are discussed in section 5.4.5. 

5.3.6   Task Events 

5.3.6.1   Task Timers 

None. 

5.3.6.2   Task Non-Timer Events 

None. 

5.3.7   Task Architecture and Communication 

This task consists of two subcomponents (as shown in the following figure): name resolution, and 
liveness/capability verification. 

Name Resolution: This subcomponent is responsible for identifying a list of candidate DCs based 
on the specified abstract parameters and the client's ADM. The name resolution is done by querying 
the DNS infrastructure. 

Liveness/Capability Verification: This subcomponent is responsible for verifying that a candidate 
domain controller is reachable and satisfies the specified requirements (through abstract parameters 

to this task). The verification is done by means of the LDAP Ping (as described in [MS-ADTS] section 
6.3.3) or the MAILSLOT ping (as described in [MS-ADTS] section 6.3.5). 

The following figure shows the two sub-components of the task and how each subcomponent 
interacts with external entities within the system. 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

53 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 19: Locating a domain controller – task architecture 

5.3.8   Task Processing Rules 

This section outlines the task's high-level steps. See section 5.4.5 for the details on each step. 

Task: Locating a Domain Controller. 

Abstract Parameters: As specified in section 5.3.3. 

Preconditions: See section 5.2.3. 

Main Success Scenario: 

1. Determine the FQDN(2) of the domain in which the domain controller is to be located based on 

the abstract parameter TaskInputDomainName. See section 5.4.5.1 for details. 

2. Use the FQDN(2) of the domain (obtained in step 1) and site information from the client's ADM to 
get a list of IP addresses of candidate domain controllers using DNS infrastructure. See section 
5.4.5.2 for details. 

3. Contact each candidate domain controller via an LDAP Ping until a domain controller is located 
that supports all the specified requirements (specified via abstract parameters 
TaskInputCapabilities, TaskInputAccountName, and TaskInputAccountControlBits). See 

section 5.4.5.3 for details. 

4. Information about the domain controller is returned to the initiator of the task. See section 
5.4.5.6 for details. 



 

54 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Extensions: 

1.    

1. The abstract parameter Domain is not a FQDN(2), and the corresponding FQDN(2) of 
the domain cannot be determined from it. Clients MUST perform the following steps to 

attempt a NetBIOS-based domain controller discovery. 
2. Determine the NetBIOS name of the domain based on the abstract parameter 

TaskInputDomainName and the client's ADM. If the NetBIOS name cannot be 
determined, the task returns an error to the task initiator, indicating that a domain 
controller could not be located. See section 5.4.5.4 for details. 

3. Use the Remote Mailslot Protocol ([MS-MAIL]) to send a MAILSLOT ping to candidate 
domain controllers. The ping response is used to determine availability and to confirm 

that the domain controller supports all the specified requirements (specified via 
abstract parameters TaskInputCapabilities, TaskInputAccountName, and 
TaskInputAccountControlBits).  

If no domain controllers respond or none of the domain controllers support all the 

requirements, the task returns an error to the task initiator indicating that a domain controller 
could not be located. See section 5.4.5.5 for details. 

4. Information about the domain controller is returned to the initiator of the task. See 
section 5.4.5.6 for details.  

2.    

5. If the DNS infrastructure cannot be contacted, go to 1.b. 
6. If no candidate domain controllers are returned by the DNS infrastructure, go to 1.b. 

3.    

7. If each candidate domain controller has been contacted and either no domain 

controller is available (no LDAP ping response) or the available domain controllers do 
not support all the specified requirements, go to 1.b. 

5.3.9   Task Failure Scenarios 

There are two primary failure scenarios for this task: 

Network Infrastructure Unavailable: In this situation, neither DNS nor NetBIOS infrastructure is 
available (for example, extension 2a in the preceding section). The task is unable to identify the 

candidate domain controllers and the task is terminated with an error. 

Domain Controller Unavailable: In this situation, either no domain controllers are located 
through DNS name resolution (illustrated as extension 2b in the preceding section), or no domain 
controller responds to the LDAP/MAILSLOT ping, or the domain controllers that do respond do not 
satisfy all the specified requirements (illustrated as extensions 1a1b1 and 3a). In this case, the task 
is terminated with an error. 

5.4   Task Details 

This section contains the details that complete the descriptions in earlier sections of the document. 
These are needed to understand and implement this task. 

%5bMS-MAIL%5d.pdf


 

55 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

5.4.1   Task Precondition Details 

Not applicable. 

5.4.2   Task Initialization of External Entities 

None. 

5.4.3   Task Event Details 

5.4.3.1   Task Timer Details 

None. 

5.4.3.2   Task Non-Timer Event Details 

None. 

5.4.4   Task Architectural Details 

This task can be performed by using one or both of two possible approaches: DNS-based location 
and NetBIOS-based location. If the FQDN(2) of the domain is available, the DNS-based location 

MUST be performed. If only the NetBIOS name of the domain is available, or if the DNS-based 
location is unsuccessful, the NetBIOS-based location MUST be performed. 

A high level overview of each location approach is presented in the following sections. Details are 
provided in section 5.4.5. 

5.4.4.1   Location Based on DNS Domain Name 

As described in [MS-ADTS] section 6.3.2, all domain controllers register SRV records in DNS. The 

DNS-based location approach leverages these SRV records to obtain a list of candidate domain 

controllers that can potentially satisfy the requirements of the client. Each domain controller in this 
list is then contacted via an LDAP ping until one that is available and that meets all specified 
requirements is found.<4> <5><6>The following figure shows the sequence of interactions that the 
client has with the DNS infrastructure and the domain controller(s) as part of this location 
mechanism. 

%5bMS-ADTS%5d.pdf


 

56 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 20: Location based on DNS domain name 

5.4.4.2   Location Based on NetBIOS Domain Name 

Locating a domain controller based on the NetBIOS domain name relies on NetBIOS group names, 
which can be implemented either by broadcast or by querying a NetBIOS Name Server (NBNS). A 
working NetBIOS infrastructure is required for this locator method to work effectively. NetBIOS over 

IP is covered in [RFC1001] and [RFC1002]. As described in [MS-ADTS] section 6.3.4, all domain 
controllers register certain NetBIOS group names with the NetBIOS infrastructure. In the NetBIOS 
based location approach, the client sends a mailslot ping to candidate domain controllers by 
targeting the appropriate group names via the Remote Mailslot Protocol ([MS-MAIL]). The following 
figure shows the sequence of interactions that the client has with the NetBIOS infrastructure and the 
domain controller as part of this location mechanism. 

http://go.microsoft.com/fwlink/?LinkId=90260
http://go.microsoft.com/fwlink/?LinkId=90261
%5bMS-ADTS%5d.pdf
%5bMS-MAIL%5d.pdf


 

57 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 21: Location based on NetBIOS domain name (via NBNS and Broadcast) 

5.4.5   Task Processing Rule Details 

This section describes details for the steps identified in section 5.3.8. Unless otherwise specified, the 
processing falls through from one section to the next. The following figure captures the processing 
sequence as a flowchart. 



 

58 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 22: Processing sequence 

5.4.5.1   Determine DNS Domain Name of the Domain 

TaskLocalDnsDomainName MUST be initialized as follows: 

1. If the abstract parameter TaskInputDomainName is specified, this name is looked up in the 

client's ADM element TrustedDomains. If a match is found, and the matching tuple's FQDN is 
set, TaskLocalDnsDomainName is initialized with the FQDN(2) the matching tuple.  

2. If the abstract parameter TaskInputDomainName is specified, but no match is found in the 

TrustedDomains and TaskInputDomainName appears to be a syntactically valid FQDN(2), 
TaskLocalDnsDomainName is initialized to TaskInputDomainName. 



 

59 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

3. If the abstract parameter TaskInputDomain is not specified (is NULL), then 
TaskLocalDnsDomainName is initialized to the value of DomainName.FQDN as specified in 

section 4.3.1.1. If DomainName.FQDN is NULL, meaning the client is not currently joined to a 
domain, the task MUST return an error. 

If TaskLocalDnsDomainName cannot be initialized using any of the preceding rules, DNS based 
location is not possible. The task MUST fallback to the NetBIOS-based location as described in 
sections 5.4.5.4 and 5.4.5.5. 

5.4.5.2   Identify List of Candidate Domain Controllers Based on DNS Information 

After TaskLocalDnsDomainName is determined, a list of candidate domain controllers is obtained 
by querying DNS for SRV records. The client MUST construct the SRV query as follows: 

1. Based on the value of the flags DS_PDC_FLAG, DS_LDAP_FLAG, DS_GC_FLAG, 
DS_KDC_FLAG, and DS_DS_FLAG of the abstract parameter TaskInputCapabilities (which 
lists the requested capabilities of the domain controller), the appropriate query is selected from 
those listed in [MS-ADTS] section 6.3.6. Other capabilities specified in TaskInputCapabilities 

do not contribute to the selection of this query. Capabilities specified in TaskInputCapabilities 
are used to validate the capabilities in the response (see sections 5.4.5.3 and 5.4.5.5). 

2. If the client's SiteName ADM element is initialized, the client MUST attempt to first use a site-
specific query where applicable. For example, if the client is attempting to locate a KDC, the 
following query could be used: 
_kerberos._tcp.<SiteName>._sites.dc._msdcs.<TaskLocalDnsDomainName>. 

3. If the client's SiteName ADM element is not initialized, or the site-specific query does not result 
in any candidate domain controllers, or if the candidate domain controllers are not reachable via 
LDAP Ping (described in section 5.4.5.3), clients MUST fallback to non site-specific queries. Using 

the same KDC example as before, the following query could be used: 
_kerberos._tcp.dc._mcdcs.<TaskLocalDnsDomainName>. 

The DNS exchange is done as specified in the DNS protocols ([RFC2782] and related RFCs). 

If no candidate domain controllers can be identified using SRV queries, the client MUST fallback to 
NetBIOS based location as described in sections 5.4.5.4 and 5.4.5.5. 

5.4.5.3   Ping the Candidate Domain Controllers for "Liveness" and Capability 

Verification Using LDAP Ping Mechanism 

Once the list of candidate domain controllers is obtained using the DNS infrastructure, the client 
MUST select a candidate domain controller based on weighted random order (see [RFC2052]). The 
client then resolves the SRV record to an IP address using A/AAAA DNS queries. 

Once the address is known, the client sends an LDAP "Ping", [MS-ADTS] section 6.3.3, to the 
candidate domain controller to determine whether the domain controller is in fact handling requests 

and whether its capabilities satisfy the client requirements. 

The LDAP Ping request MUST be constructed as an LDAP rootDSE search with an LDAP filter that is a 

one-level AND of equalityMatch tests of the following elements: 

DnsDomain: Equals TaskLocalDnsDomainName. 

Host: Equals ComputerName.NetBIOS from the client's ADM. 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90381
http://go.microsoft.com/fwlink/?LinkId=94441
%5bMS-ADTS%5d.pdf


 

60 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

User: Equals TaskInputAccountName if the parameter TaskInputAccountName is specified, 
else this element is not included in the filter. 

AAC: Equals TaskInputAccountControlBits if the parameter TaskInputAccountControlBits is 
specified, else this element is not included in the filter. 

NtVersion: NETLOGON_NT_VERSION options (see [MS-ADTS] section 6.3.1.1). This MUST be set 
as follows. 

1. The following bits are always set: NETLOGON_NT_VERSION_5, NETLOGON_NT_VERSION_5EX, 
and NETLOGON_NT_VERSION_WITH_CLOSEST_SITE.<7> 

2. In addition, other bits are set depending on the value of the abstract parameter 
TaskInputCapabilities as follows: 

Flag in TaskInputCapabilities NETLOGON_NT_VERSION Bit 

DS_GC_FLAG NETLOGON_NT_VERSION_GC 

DS_PDC_FLAG NETLOGON_NT_VERSION_PDC 

The client sends the LDAP Ping request as follows: 

1. The client invokes the task Initializing an ADUDPHandle ([MS-ADTS] section 7.7.3.1) with the 
following parameters: 

TaskInputTargetName is set to the address of the domain controller. 

TaskInputPortNumber is set to 389. 

TaskInputProtocolVersion is set to 3. 

2. Step 1 above returns an LDAP_UDP_HANDLE which is a pointer to an instance of ADUDPHandle 
described in [MS-ADTS] section 7.7.2 (ADUDPHandle Abstract Data Model). Let the returned 

handle be adUDPHandle. 

3. Let ldapPingResultMessages be a list of LDAPMessage objects. 

4. The client invokes the task Performing an LDAP operation on an ADUDPHandle ([MS-ADTS] 

section 7.7.3.2) with the following parameters: 

TaskInputADUDPHandle is set to adUDPHandle. 

TaskInputRequestMessage is set to the LDAP Ping request constructed above. 

TaskOutputResultMessages is set to ldapPingResultMessages. 

TaskInputRequestTimeout is set according to the timeout/retry logic that the client 

implements (The behavior of a Windows domain client is described below). 

5. Step 4 above returns taskReturnStatus indicating the result of the LDAP operation. 

If there is no response, that is, if taskReturnStatus in step 4 above indicates that a timeout has 
occurred, the client SHOULD implement some level of retry logic, selecting other entries from the 
SRV request response. If the client retries too much, then responsiveness on the client can be 
reduced. If the client retries too few times, then there is the risk of not finding a domain controller 
because of transient network conditions.<8> 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

61 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Upon receipt of a successful LDAP Ping response returned in ldapPingResultMessages in step 3 
above, the client MUST validate that the capabilities returned by the domain controller satisfy the 

requested capabilities (abstract parameters TaskInputCapabilities). The capabilities are typically 
returned in a NETLOGON_SAM_LOGON_RESPONSE_EX structure ([MS-ADTS] section 6.3.1.9), but 

can be in a NETLOGON_SAM_LOGON_RESPONSE or NETLOGON_SAM_LOGON_RESPONSE_NT40 
([MS-ADTS] sections 6.3.1.8 and 6.3.1.7, respectively). The format of the response buffer is in 
response to the version information sent by the client in the NETLOGON_NT_VERSION element. This 
is fully detailed in [MS-ADTS] section 6.3.3.2. 

If the capabilities returned by the domain controller are incompatible with the requirements 
specified by the invoker of the locator algorithm on entry, the client has to select another candidate 
domain controller from the list of domain controller SRV records returned above. Incompatibility in 

this case can arise because the client requested a Kerberos KDC, but the domain controller did not 
indicate that a KDC was present, or the client requested a domain controller that could accept 
writes, but this domain controller is read-only. This is not a catastrophic error; the client has to 
simply move on to another candidate domain controller. 

Windows domain clients maintain a list of domain controllers as described in section 5.4.5.2. For the 

first five domain controllers selected from the list, a timeout value of 0.4 seconds is used. For the 

next five domain controllers selected from the list, a timeout value of 0.2 seconds is used and for 
the remaining domain controllers, a timeout value of 0.1 seconds is used. If the LDAP Ping request 
times out, or capabilities returned by the domain controller do not satisfy the requested capabilities, 
then that domain controller is considered not to be available. 

If all the responses in the SRV records have been checked, and each SRV record points to a server 
that is either not available or does not match the requirements, then the location operation has 
failed. The client MUST fallback to NetBIOS based location as described in section 5.4.5.4 and 

section 5.4.5.5. 

5.4.5.4   Determine NetBIOS Name of the Domain 

Let TaskLocalNetBIOSDomainName be the NetBIOS name of the domain in which a domain 
controller is to be located. TaskLocalNetBIOSDomainName MUST be initialized as follows: 

1. If the abstract parameter TaskInputDomainName is specified, this name is looked up in the 
client's ADM element TrustedDomains. If a match is found, and the matching tuple’s NetBIOS 

name is set, TaskLocalNetBIOSDomainName is initialized with it. 

2. If the abstract parameter TaskInputDomainName is specified, but no match is found in the 
TrustedDomains client ADM and TaskInputDomainName appears to be a syntactically valid 
NetBIOS name, TaskLocalNetBIOSDomainName is initialized to TaskInputDomainName. 

If TaskLocalNetBIOSDomainName cannot be initialized using any of the above rules, NetBIOS 
based location is not possible. The task MUST return an error to the task initiator indicating that a 

domain controller could not be located. 

5.4.5.5   Location of Domain Controllers Based on NetBIOS Group Names 

The client uses NetBIOS group names to locate operational DCs. See [MS-ADTS] section 6.3.4 and 

[MS-MAIL] section 3.2.3 for the group names that are registered by domain controllers and their 
associated capabilities. All domain controllers register a mailslot name of "\\mailslot\net\netlogon" 
([MS-ADTS] section 6.3.5) 

The following mailslot message (see [MS-MAIL] section 3.1.4.1) MUST be sent to locate a domain 
controller: 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-MAIL%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-MAIL%5d.pdf


 

62 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

1. MailslotName = "\\mailslot\net\netlogon" 

2. Based on the TaskInputCapabilities abstract parameter, if a primary domain controller is 
required, the TargetName is set to < NetBIOSDomainName >[1B], else it is set to < 
NetBIOSDomainName >[1C]. 

3. Based on the TaskInputCapabilities abstract parameter if a primary domain controller is 
required, the Message is initialized as a NETLOGON_LOGON_QUERY structure ([MS-ADTS] 
section 6.3.1.4), else as a NETLOGON_SAM_NETLOGON_REQUEST structure ([MS-ADTS] section 
6.3.1.6). See the following details about how each of these structures is initialized based on the 
abstract parameters. 

The NETLOGON_LOGON_QUERY structure MUST be constructed with the following fields 
initialized as follows: 

    

Opcode: Set to LOGON_PRIMARY_QUERY operation code (see [MS-ADTS] section 6.3.1.3). 

ComputerName: Set to ComputerName.NetBIOS from the client's ADM. 

UnicodeComputerName: Set to ComputerName.NetBIOS from the client's ADM. 

NtVersion: NETLOGON_NT_VERSION options (see [MS-ADTS] section 6.3.1.1). The following 
bits are always set: NETLOGON_NT_VERSION_5, NETLOGON_NT_VERSION_5EX_WITH_IP, and 

NETLOGON_NT_VERSION_PDC. 

LmNtToken (2 bytes): This MUST be set to 0xFFFF. 

Lm20Token (2 bytes): This MUST be set to 0xFFFF. 

    

The NETLOGON_SAM_NETLOGON_REQUEST MUST be constructed with the following fields 
initialized as follows: 

    

Opcode (2 bytes): Set to LOGON_SAM_LOGON_REQUEST operation code (see section 7.3.1.3). 

UnicodeComputerName: Set to ComputerName.NetBIOS from the client's ADM. 

UnicodeUserName: If the abstract parameter TaskInputAccountName was specified, it is set 
to that value, else NULL. 

AllowableAccountControlBits: If the abstract parameter TaskInputAccountControlBits was 
specified, it is set to that value, else 0. 

DomainSidSize (4 bytes): A DWORD that contains the size of the DomainSid field. 

DomainSid (variable): Set to DomainSid from the client's ADM. 

NtVersion: NETLOGON_NT_VERSION options (see [MS-ADTS] section 6.3.1.1). This MUST be 
set as follows. 

1. The following bits are always set: NETLOGON_NT_VERSION_5, 
NETLOGON_NT_VERSION_5EX_WITH_IP. 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

63 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

2. If the DS_GC_FLAG bit is set in the abstract parameter TaskInputCapabilities, the 
NETLOGON_NT_VERSION_GC bit is set. 

LmNtToken (2 bytes): This MUST be set to 0xFFFF. 

Lm20Token (2 bytes): This MUST be set to 0xFFFF. 

    

Upon receipt of a successful MAILSLOT Ping response, the client MUST validate that the capabilities 
returned by the domain controller satisfy the requested capabilities (abstract parameter 
TaskInputCapabilities). The capabilities are typically returned in a 
NETLOGON_SAM_LOGON_RESPONSE structure ([MS-ADTS] section 6.3.1.8) or a 
NETLOGON_PRIMARY_RESPONSE STRUCTURE ([MS-ADTS] section 6.3.1.5), but can also be 
NETLOGON_SAM_LOGON_RESPONSE_NT40 ([MS-ADTS] section 6.3.1.7). The format of the 

response buffer is in response to the version information sent by the client in the 
NETLOGON_NT_VERSION element. This is fully detailed in [MS-ADTS] section 6.3.3.2. 

If no domain controllers respond or if none match the required capabilities, the client MUST return 
an error indicating that a domain controller could not be located. 

5.4.5.6   Returning Results to the Task Initiator and Updating the Client ADM 

If the task succeeds, the following occurs: 

If the domain in which the domain controller is to be located is the same as the client computer's 
domain, the SiteName ADM element is updated with the client site name information returned as 
part of the LDAP/MAILSLOT ping response by the domain controller. 

The abstract results are initialized as follows and returned to the task initiator. 

TaskReturnStatusCode: 0x00000000 

TaskReturnDomainController.Name: Set to either the FQDN(1) or the NetBIOS name of the 

domain controller that meets the specified requirements.<9> 

The FQDN(1) and the NetBIOS name of the domain controller are obtained from the 
LDAP/MAILSLOT Ping response. 

TaskReturnDomainController.Address: Set to the IP address of the domain controller, if 

available, otherwise set to the NetBIOS name of the domain controller. 

The IP address of the domain controller is obtained as follows: 

1. In the DNS based mechanism (sections 5.4.5.2 and 5.4.5.3), this is the IP address that was 
obtained from the A/AAAA DNS record and that was used to perform a successful LDAP ping. 

2. In the NetBIOS mechanism (sections 5.4.5.5), the IP address is obtained from the MAILSLOT 
ping response. 

TaskReturnDomainController.AddressType: Set to the enum value IPAddress, if the IP 

address of the domain controller is available, else it is set to the enum value NetBIOS. 

If the task fails, the abstract results are initialized as follows and returned to the task initiator. 

TaskReturnStatusCode: a Win32 error code as specified in [MS-ERREF] section 2.2. 

TaskReturnDomainController: NULL. 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ERREF%5d.pdf


 

64 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

5.5   Task Security 

There are no task-specific security considerations. Please refer to the Security section of this 
specification and the Security sections of the referenced protocol Technical Documents. 



 

65 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

6   Joining a Domain Using a Predefined Account 

This section describes the process by which a client computer can join a domain using a predefined 
account configured in the domain. A predefined account needs to be configured with a password 
derived from the client computer name and hence this task is not secure by definition. 

6.1   Task Overview 

6.1.1   Task Purpose 

The purpose of this task is to establish a client computer as a member of a domain using a 
predefined account in the domain. 

6.1.2   Task Applicability 

This task is applicable in the case where a predefined account needs to be used to join a client 
computer to a domain. 

6.1.3   Task Use Cases 

6.1.3.1   Stakeholders and Interests Summary 

Client Administrator: The client administrator is the administrator of the client computer, 
interested in joining the client computer to the domain. 

Client Computer: The client computer that is being joined to the domain. 

Domain Administrator: The domain administrator is the administrator of the domain. The domain 

administrator configures the domain with a machine account that the current task uses to join the 
client to the domain. After the join is completed, the domain administrator is able to influence the 
client computer via other protocols; see sections 3.1 and 3.4, and [MS-WSO], for further details. 

Domain Controller: The domain controller is a computer providing domain services to domain 
clients. The pre-defined machine account on the domain controller is modified by the client during 
task processing. 

6.1.3.2   Supporting Actors and Task Interests Summary 

This Task depends on the following supporting actors for the specified interests: 

SMB protocol ([MS-SMB2], [MS-SMB], or [MS-CIFS]), for opening/closing SMB sessions to a DC. 

The Task does not require that any specific SMB protocol be used. 

[MS-NRPC] protocol, for locating a domain controller (DC), establishing a Netlogon binding to a 

DC, for enumerating the trusted domains, and for updating the machine account password. 

[MS-LSAD] protocol, for retrieval of information about a domain from a DC. 

[MS-DRSR] protocol, for searching for the client computer account on a DC. 

There are no other systems or tasks in which this task is an actor. 

%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-DRSR%5d.pdf


 

66 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

6.1.3.3   Use Case Diagrams 

 

Figure 23: Joining a domain with a predefined account use case 

6.1.3.4   Join a Client Computer to a Domain Using a Predefined Account — Client 

Computer 

The only use case for this task is a client administrator joining the client computer to a domain using 

a predefined account on a domain controller. 

Goal: Join a client computer to a domain using a predefined account. 

Context of Use: This task is invoked by the client administrator in order to enable the client 
computer to access the services and resources in a domain as well as provide the domain members 
access to the client computer. See sections 3.1 and 3.4 for other motivations for joining a domain. 

Direct Actor: The client administrator who wants to join the client computer to the domain. 

Primary Actor: The client administrator who wants to join the client computer to the domain. 

Direct Actor: The client computer joining the domain. 

Supporting Actors: All supporting actors are specified in section 6.1.3.2. 

Stakeholders and Interests: There are no other stakeholders for the current task besides those 
listed under primary actor, direct actor, and supporting actors sections as presented earlier. 

Precondition: The preconditions for this use case are the same as those listed for the task in 
section 6.2.3. 

Minimal Guarantees: This use case guarantees that upon failure, the local client computer state 
(section 4.3.1.1) is unchanged. 

Success Guarantee: The client is joined to the domain. 

Trigger: This use case is triggered by the client administrator to join the client to a domain. 

Main Success Scenario: 



 

67 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

1. The client administrator initiates the domain join task on the client computer. 

2. The client locates a domain controller. 

3. The client connects to the domain controller as the anonymous user (see [MS-NLMP] section 
3.2.5.1.2) and retrieves domain information. 

4. The client binds to the domain controller using predefined account credentials. 

5. The client determines the trusted domains. 

6. The client updates the local client state. 

7. The client reinitializes local protocols. 

Extensions: None. 

6.2   Task Context 

This section describes the relationship between this task and its environment. 

6.2.1   Task Environment 

The task requires the following environment: 

The client computer SHOULD have basic network connectivity and basic network infrastructure 

services like DNS SHOULD be available to the client and the domain controllers. This task will fail 

if this requirement is not met. 

The domain controller used for the join SHOULD be configured to accept anonymous SMB 

sessions. 

6.2.2   Task Relationships 

This task builds on the Common Task Information (see section 4), which is shared with all of the 

tasks in this document. 

6.2.2.1   Black Box Relationship Diagram 

The following black box diagram illustrates the system as the client computer joins the domain using 
a predefined account and interacts with the domain controllers that are offering services to the 
client. 

%5bMS-NLMP%5d.pdf


 

68 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 24: Client machine joining a domain using a predefined account 

6.2.2.2   Task Dependencies 

This task depends on the following: 

At least one domain controller being available. 

A domain controller being located. 

6.2.2.3   Task Influences 

None. 

6.2.3   Task Assumptions and Preconditions 

The following are the success conditions for this task: 

The administrator of the domain has created an account to represent the computer that wants to 

join the domain and this account is present on the domain controller selected by the client during 
task processing. The password for this account MUST be set to the machine's account name in 
lower case. This allows the client to have a priori knowledge of the key to use for authentication. 

The domain controller selected by the client is assumed to accept anonymous SMB sessions. 

6.2.4   Task Versioning and Capability Negotiation 

None. 



 

69 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

6.3   Task Architecture 

6.3.1   Task Architectural Constraints 

This task has the following architectural constraints: 

The client computer can be joined to only a single domain at a time. 

Only one instance of this task MUST run on the client computer at any given time. As the task 

aims to join the client computer to a single domain, it does not support multiple, parallel 
executions. 

This task MAY be run a second time following a previous successful completion, in order to join 

the client computer to a different domain. 

This task MUST NOT make assumptions about distributed state, such as the machine account on 

the domain controller. 

This task MAY be run a second time following a previous unsuccessful run, as an unsuccessful run 

makes no changes to the client state. 

6.3.2   Task Abstract Data Model 

This section describes state established, used, and maintained by processing rules of this Task. 
State may be volatile or persisted. State may pertain to one, some, or all instances of the Task. The 
Task's state consists of the values of the named data elements (also called state variables) 
presented in this section. The overall organization of the data elements, with their names, is the 
Abstract Data Model. It is intended to facilitate the reader's conceptual understanding of the 

specification. While a Task's processing rules may depend upon associations established by the 
structure of its Abstract Data Model, such association can be achieved in other ways. 
Implementations may depart from this model so long as their external behavior remains consistent 
with that described in this document. 

The following are the in-memory values used by the Task. These values are not persisted. 

Name Type Description 

TaskLocalClientName string 

(Unicode) 

Contains the samAccountName attribute value for 

the predefined account in the domain. 

TaskLocalPassword string 

(Unicode) 

Contains the password for the predefined account 

in the domain. 

TaskLocalNewPassword string 

(Unicode) 

Contains a randomly generated password. 

TaskLocalDomainName.FQDN string 

(Unicode) 

Contains the FQDN(1) of the domain being joined. 

TaskLocalDomainName.NetBIOS string 

(Unicode) 

Contains the NetBIOS name of the domain being 

joined. 

TaskLocalDomainController string 

(Unicode) 

Contains the name of the domain controller used 

by this task. 

TaskLocalForestNameFQDN string 

(Unicode) 

Contains the FQDN(1) of the forest containing the 

domain being joined. 



 

70 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Name Type Description 

TaskLocalDomainSID SID Contains the SID of the domain being joined. 

TaskLocalDomainGUID GUID Contains the GUID of the domain being joined. 

TaskLocalTrustedDomains Domains Contains a list of trusted domains for the domain 

being joined. 

TaskLocalClientAccountDN string 

(Unicode) 

Contains the DistinguishedName of the client 

account in the domain. 

TaskLocalSMBSession SMB/CIFS 

session 

Contains the returned SMB state for the SMB/CIFS 

session established to the domain controller. 

TaskLocalAlreadyJoined Boolean Whether the client is already joined to a domain at 

the start of the Task. 

The following client data model variables (section 4.3.1.1) are updated by the Task during a 
successful completion: 

DomainSid 

DomainGuid 

DomainName (both NetBIOS and FQDN Names) 

ClientName 

Password 

TrustedDomains 

6.3.3   Task Abstract Parameters 

This section describes data passed to an instance of this task at the time it is invoked or triggered. 
The parameters consist of the values of the named data elements presented in this section. The 
organization of a data element, with its names, is an Abstract Parameter. It is intended to facilitate 

the reader's conceptual understanding of the specification. While a task's processing rules could 
depend upon associations established by the structure of its Abstract Parameters, such association 
can be achieved in other ways. Implementations can depart from this abstraction so long as their 
external behavior remains consistent with that described in this document. 

The abstract parameters for this task are as follows: 

Name Type Description Optional 

TaskInputDomainName string 

(Unicode) 

Specifies the NetBIOS or FQDN name of the 

domain to join. 

No 

TaskInputDomainController string 

(Unicode) 

Specifies the domain controller this task 

must use to complete the join. 

Yes 

6.3.4   Task Abstract Results 

This section describes data returned by an instance of this task to its caller. The results consist of 

the values of the named data elements presented in this section. The organization of a data 



 

71 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

element, with its names, is an Abstract Result. It is intended to facilitate the reader's conceptual 
understanding of the specification. While a task's processing rules could depend upon associations 

established by the structure of its Abstract Results, such association can be achieved in other ways. 
Implementations can depart from this abstraction so long as their external behavior remains 

consistent with that described in this document. 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus integer This task MUST return 0x00000000 on success. Error statuses generated 

by a failure during task processing are in the Win32 error space (a long 

data type), as specified in [MS-ERREF] section 2.2. 

Upon a successful task completion, this task performs the following: 

1. Updates client ADM variables (section 4.3.1.1). The updated values are persisted, as specified in 

section 4.3.1.1, and are available for other protocols on the client to use. 

2. Starts the NetLogon Remote Protocol and configures it to run automatically at every system 
start up. 

3. Notifies the Certificate Autoenrollment system that the machine is joining the domain. 

4. Adds the Domain Administrators to the local Administrators group. 

5. Notifies the local MS-SNTP protocol that the machine is joining the domain (failures in this step 
are ignored). 

Note that no changes are made to the pre-existing client computer account in the domain as a 

result of a successful task completion. 

Upon a failed task completion, this task will not modify the state of the pre-existing computer 
account in the domain, and will attempt to revert any local state changes that were made prior to 

the task failure. If the task is unable to revert local state changes that were made, administrator 
intervention outside the scope of the task may be necessary to reconfigure the client back to its 
original state. 

6.3.5   White-Box Relationships 

The following diagram represents the white-box relationships of the task within the client computer 
and with the domain controller. 

%5bMS-ERREF%5d.pdf


 

72 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 25: Task white-box relationships diagram 

6.3.6   Task Events 

6.3.6.1   Task Timers 

None. 

6.3.6.2   Task Non-Timer Events 

None. 

6.3.7   Task Architecture and Communication 

Joining a Domain Task (Predefined Account): This box represents the task, including the task 
ADM and processing (see section 6.4.5). This box invokes the local [MS-NRPC] server to locate a 
domain controller. This box interacts with the domain controller for achieving the goals of this task. 

This box also configures client ADM, several client local states and fires required triggers as a final 
step in a successful run. 

Client ADM, Group Membership: These boxes are configured by the Joining a Domain Task box 
as one of the final steps on a successful run of the task. 

Time Service, Cert Auto Enrollment Service: These boxes are signaled by the Joining a Domain 
Task box as one of the final steps on a successful run of the task. 

Netlogon Service: This box is configured by the Joining a Domain Task box as one of the final 

steps on a successful run of the task. 

SMB, Netlogon, LDAP, LSARPC: These boxes represent the server-side implementations of the 
protocols used by this task, namely SMB, Netlogon, LDAP and LSAR. 

%5bMS-NRPC%5d.pdf


 

73 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Directory: This box represents the Directory Service running on the Domain Controller and it holds 
the predefined account for the client computer. 

 

Figure 26: Client joining a domain using a predefined account – architecture and 
communication 

6.3.8   Task Processing Rules 

Abstract Parameters: As specified in section 6.3.3. 

Preconditions:  

A predefined account is set up in the domain for joining the client to the domain. 

Main Success Scenario: 

1. Locate a domain controller to be used during task processing (see section 6.4.5.1). 

2. Establish a SMB/CIFS session to the domain controller (see section 6.4.5.2). 

3. Retrieve domain information from the domain controller using the [MS-LSAD] protocol (see 
section 6.4.5.3). 

4. Validate the predefined account credentials using a Netlogon binding to the domain controller 
(see section 6.4.5.4). 

5. Enumerate domain trusts (see section 6.4.5.5). 

6. Update local state (see section 6.4.5.6). 

%5bMS-LSAD%5d.pdf


 

74 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

7. Close the SMB/CIFS session (see section 6.4.5.7). 

8. Reinitialize local protocols (see section 6.4.5.8). 

Extensions: 

1. Unable to locate a domain controller, terminate task with error. 

2. Domain controller cannot be reached, terminate task with error. 

3. Domain information cannot be retrieved, terminate task with error. 

4. Netlogon binding fails, terminate task with error. 

5. Domain trust enumeration fails, terminate task with error. 

6. Update of local state fails, terminate task with error. 

6.3.9   Task Failure Scenarios 

The following are the common failure scenarios for the current task: 

Unable to Locate DC: If a domain controller in the domain TaskInputDomainName cannot be 
located, (1), the task fails. This condition MAY occur if the network infrastructure is not configured 
correctly or is unavailable. 

Domain Controller Unavailable: If TaskLocalDomainController cannot be reached due to any 
reason (2) while the client opens connections or queries or updates the domain controller (all the 

domain controller interactions shown), the task fails. This failure MAY happen because of conditions 
on the domain controller or network disruptions. 

Authentication Fails: If the TaskLocalClientName and derived TaskLocalPassword do not 
authenticate the Client binding to the domain controller (4), the task fails. This failure happens if the 
predefined account has not been configured correctly. 

Queries or Updates Fail on Domain Controller: If any of the queries or updates made to 
TaskLocalDomainController fails (3, 5), the task fails.  This failure MAY happen because of 

conditions on the domain controller. 

Failed Updates to Local State: If any of the updates made to local state fail (6), the task fails. 
This failure MAY happen because of conditions on the client. 

6.4   Task Details 

This section contains the details that complete the descriptions in earlier sections of the document. 
These are needed to understand and implement this task. 

6.4.1   Task Precondition Details 

Not applicable. 

6.4.2   Task Initialization of External Entities 

Once a domain controller is located using the Locate Domain Controller task, communication is 
directly with the domain controller. 



 

75 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

6.4.3   Task Event Details 

6.4.3.1   Task Timer Details 

None. 

6.4.3.2   Task Non-Timer Event Details 

None. 

6.4.4   Task Architectural Details 

The general process flow is as follows: The client is operating in the environment described in 

section 6.2.1. The client tries to determine a domain controller in the domain it is required to join 
using DsrGetDcNameEx2 method of the local MS-NRPC server. After the domain controller is 
determined, the client retrieves domain information using the LSARPC protocol. Then the client 
binds to the Netlogon RPC interface of the domain controller using the predefined account 

credentials, verifying its credentials in the process. The client then retrieves domain trusts from the 
domain controller. Finally, the client updates its own state saving data to indicate that it has now 
joined the domain. 

The following figure shows the network traffic for a typical main success scenario. Note that the 
initial exchange (Locate a DC) is representative only of the traffic between the client and the 
selected domain controller; additional exchanges that may occur to other domain controllers are not 
represented. See section 5.4.4 for additional details. 

The sequence diagram for this task is shown in the following figure. 

 

Figure 27: Joining a domain using a predefined account sequence diagram 



 

76 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

6.4.5   Task Processing Rule Details 

This section describes details for the steps identified in section 6.3.8. Unless otherwise specified, the 
processing falls through from one section to the next. 

The following flowchart for the current task shows the sequential steps in the task, as well as failure 
decisions taken based on the results in each step. 

 

Figure 28: Joining a domain using a predefined account task flowchart 

The initial state of the in-memory task ADM (see section 6.3.2) is initialized as follows: 

TaskLocalClientName = ComputerName.NetBIOS "$"  

TaskLocalPassword = ComputerName.NetBIOS in all lower case  

TaskLocalNewPassword = <undefined> 

TaskLocalDomainSID = <undefined> 

TaskLocalDomainGUID = <undefined> 



 

77 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

TaskLocalDomainController = TaskInputDomainController 

TaskLocalClientAccountDN = <undefined> 

TaskLocalDomainName = <undefined> 

TaskLocalForestNameFQDN = <undefined> 

TaskLocalSMBSession = <undefined> 

TaskLocalAlreadyJoined = FALSE if DomainSID is equal to NULL, TRUE otherwise 

6.4.5.1   Locate a Domain Controller 

If TaskLocalDomainController is not already specified, the client MUST locate a domain controller 
as follows:  

1. The client MUST invoke the DsrGetDcNameEx2 method on the local MS-NRPC server, specifying 

the following parameters: 

ComputerName = NULL 

AccountName = ComputerName.NetBIOS (section 4.3.1.1) 

AllowableAccountControlBits = ADS_UF_WORKSTATION_TRUST_ACCOUNT | 

ADS_UF_SERVER_TRUST_ACCOUNT ([MS-ADTS] section 2.2.16) 

DomainName = TaskInputDomainName 

DomainGuid = NULL 

SiteName = NULL 

Flags = (DS_WRITABLE_FLAG | DS_DS_FLAG | DS_LDAP_FLAG | DS_KDC_FLAG) ([MS-ADTS] 

section 6.3.1.2). 

Upon success, the following elements in the task ADM are set as follows: 

TaskLocalDomainController = DomainControllerInfo.DomainControllerName 

2. If the above DsrGetDcNameEx2 call fails, the client MUST invoke the DsrGetDcNameEx2 
method on the local MS-NRPC server, specifying the following parameters: 

ComputerName = NULL 

AccountName = NULL 

AllowableAccountControlBits = ADS_UF_WORKSTATION_TRUST_ACCOUNT | 

ADS_UF_SERVER_TRUST_ACCOUNT ([MS-ADTS] section 2.2.16) 

DomainName = TaskInputDomainName 

DomainGuid = NULL 

SiteName = NULL 

Flags = (DS_WRITABLE_FLAG | DS_DS_FLAG | DS_LDAP_FLAG | DS_KDC_FLAG) ([MS-ADTS] 

section 6.3.1.2). 

Upon success, the following elements in the task ADM are set as follows: 

TaskLocalDomainController = DomainControllerInfo.DomainControllerName 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

78 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

If step 1 and step 2 both fail, the task MUST fail. 

6.4.5.2   Establish SMB/CIFS Session to the Domain Controller 

The client MUST establish an SMB/CIFS session using anonymous user credentials to the IPC$ share 

on the TaskLocalDomainController domain controller by invoking [MS-CIFS] section 3.4.4.7 
specifying the following parameters: 

ServerName = TaskLocalDomainController.FQDN 

UserCredentials = Credentials of the anonymous user (consisting of an empty string "" for both 
username and password). 

Upon success, the client MUST store the results in TaskLocalSMBSession. 

6.4.5.3   Retrieve Domain Information from the Domain Controller 

The SMB/CIFS session established to TaskLocalDomainController in the preceding section is 

reused as transport for LSA RPC calls as per the algorithm defined in [MS-CIFS] section 3.2.4.2.1. 

1. The client MUST bind to the LSA RPC endpoint, as specified in [MS-LSAD] section 1.9, on 
TaskLocalDomainController.FQDN with the same credentials used to establish the SMB 
session in the previous step. 

The bind can fail when using anonymous user credentials and the domain controller is not 
configured to accept anonymous clients using the LSA RPC endpoint (see [MS-SRVS] sections 
3.1.3 and 3.1.6.17). The client MUST use a more secure algorithm (section 7 or section 8) to join 
the domain in that case. 

2. The client MUST invoke the LsarOpenPolicy2 method ([MS-LSAD] section 3.1.4.4.1) with the 
following parameter values: 

SystemName = TaskLocalDomainController.FQDN 

ObjectAttributes = NULL 

DesiredAccess = MAXIMUM_ALLOWED 

Upon success, LsarOpenPolicy2 returns as an out parameter a PolicyHandle (context handle), 
which MUST be used for the subsequent LsarQueryInformationPolicy2 and LsarClose calls. 

3. The client MUST invoke LsarQueryInformationPolicy2 method ([MS-LSAD] section 3.1.4.4.3) 
with the following parameter values: 

InformationClass = PolicyDnsDomainInformation 

4. The client MUST update the task ADM (section 6.3.2) as follows: 

TaskLocalDomainName.NetBIOS = PolicyInformation.PolicyDnsDomainInfo.Name 

TaskLocalDomainName.FQDN = PolicyInformation.PolicyDnsDomainInfo.DnsDomainName 

TaskLocalDomainSID = PolicyInformation.PolicyDnsDomainInfo.Sid 

TaskLocalDomainGUID = PolicyInformation.PolicyDnsDomainInfo.Guid 

TaskLocalForestNameFQDN = PolicyInformation.PolicyDnsDomainInfo.DnsForestName 

%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-SRVS%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-LSAD%5d.pdf


 

79 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

The client MUST invoke LsarClose ([MS-LSAD] section 3.1.4.9.4) to close the handle opened in 
step 2. 

5. Any failure during the preceding call sequence is will cause the task to fail. 

6.4.5.4   Validate the Predefined Account Credentials 

The next step is validating the predefined account credentials by invoking the 
NetrServerReqChallenge and NetrServerAuthenticate3 [MS-NRPC] methods on 
TaskLocalDomainController. The existing SMB/CIFS session MUST be used as the Netlogon 
transport.  

The client MUST invoke the NetrServerReqChallenge method on the domain controller, 

specifying the following parameters: 

PrimaryName = TaskLocalDomainController 

ComputerName = ComputerName.NetBIOS 

ClientChallenge = (set as specified in [MS-NRPC] section 2.2.1.3.4 and 3.4.5.2.1) 

The client MUST invoke the NetrServerAuthenticate3 method on the domain controller, 

specifying the following parameters: 

PrimaryName = TaskLocalDomainController 

AccountName = ComputerName.NetBIOS$ 

SecureChannelType = WorkstationSecureChannel (see [MS-NRPC] section 2.2.1.3.12) 

ComputerName = ComputerName.NetBIOS 

ClientCredential = (set as specified in [MS-NRPC] section 2.2.1.3.4) 

NegotiateFlags = O bit (as specified in [MS-NRPC] section 3.1.4.2) 

When the authentication sequence finishes successfully, the client and domain controller are assured 

of each other's identity and the credentials of the predefined account are validated as well. The 
predefined account can henceforth be referred to as "client account" or "client computer account" 
and the three terms can be used interchangeably to refer to the same account in the directory. 

Any failure during the preceding sequence MUST cause the task to fail. 

6.4.5.5   Enumerate Domain Trusts 

The client MUST retrieve the list of Domain Trusts from the domain controller by invoking the 

DsrEnumerateDomainTrusts method ([MS-NRPC] section 3.5.4.7.1)<10> specifying the following 
parameters: 

ServerName = TaskLocalDomainName.FQDN 

Flags = A|B|C|D|E|F ([MS-NRPC] section 3.5.4.7.1) 

Upon successful completion of this stage, the client MUST update the following ADM elements: 

TaskLocalTrustedDomains = List of domain trusts returned by DsrEnumerateDomainTrusts 

%5bMS-LSAD%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-NRPC%5d.pdf


 

80 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

6.4.5.6   Update Local State 

1.   Update local state. 

1. The client MUST stop the Netlogon Remote Protocol (MS-NRPC) if it is running. 

If this step fails, the task fails. Otherwise execution continues at step 1.b. 

2. If TaskLocalAlreadyJoined is TRUE, the client MUST invoke the "Certificate 
Autoenrollment Task" task ([MS-CAESO] section 4) specifying the IsUnjoiningDomain 
input parameter ([MS-CAESO] section 4.3.3) to be TRUE. 

The task must continue execution at the next step (1.c) regardless if this step failed. 

3. If TaskLocalAlreadyJoined is TRUE, the client MUST invoke the domain unjoin 
processing event in [MS-SAMR] section 3.1.7.2 with the parameters set as follows: 

DomainSID = DomainSID (section 4.3.1.1) 

The task must continue execution at the next step (1.d) regardless if this step failed. 

4. The client MUST invoke the domain join processing event in [MS-SAMR] section 3.1.7.1 
with the parameters set as follows: 

DomainSID = TaskLocalDomainSID 

If this step fails, the task must begin executing step 2 as follows. 

5. The client MUST update the following client state values to the ADM values specified in 
this section. The client MUST remember the original values in case they need to be 
restored in case of a failure (see step 2.a). These values MUST be modified in a single 
atomic update. 

DomainName.FQDN = TaskLocalDomainName.FQDN 

DomainName.NetBIOS = TaskLocalDomainName.NetBIOS 

DomainGuid = TaskLocalDomainGUID 

DomainSid = TaskLocalDomainSID 

ForestNameFQDN = TaskLocalForestNameFQDN 

ClientName = TaskLocalClientName 

Password = TaskLocalPassword 

TrustedDomains = TaskLocalTrustedDomains 

If this step fails, the task must begin executing step 2 below. 

6. The client MUST configure the Netlogon Remote Protocol to start automatically at 

every boot. 

If this step fails, the task must begin executing step 2 below. 

7. The client MUST start the NetLogon Remote protocol. 

If this step fails, the task must begin executing step 2 below. 

%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf


 

81 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

8. The client MUST invoke the Domain Join Processing higher layer triggered event in 
[MS-SNTP] section 3.1.4.1; the result of this operation is ignored by the task. 

2.   Rollback steps in case of error. 

The following steps are executed only upon a failure of one of the substeps shown in section 1. 

9. The client MUST restore the client ADM variables updated in step 1.c above to their 
original values. 

10. If TaskLocalAlreadyJoined is TRUE, the client MUST configure the Netlogon Remote 
Protocol to start automatically at every boot; otherwise, the client MUST configure the 
Netlogon Remote Protocol to not start automatically at every boot. 

11. If TaskLocalAlreadyJoined is TRUE , the client MUST initialize the Netlogon Remote 
Protocol; otherwise, the client MUST uninitialize the Netlogon Remote Protocol.  

12. If TaskLocalAlreadyJoined is TRUE, and if step 1.c succeeded, the client MUST 
invoke the Domain join processing event in SAMR ([MS-SAMR] section 3.1.7.1) 
specifying the following parameters: 

DomainSID = DomainSID (section 4.3.1.1) 

13. If step 1d succeeded, the client MUST invoke the Domain unjoin processing event in 
SAMR ([MS-SAMR] section 3.1.7.2) specifying the following parameters: 

DomainSID = TaskLocalDomainSID 

14. If step 1b succeeded, the client MUST invoke the "Certificate Autoenrollment Task" 
task ([MS-CAESO] section 4) specifying the IsUnjoiningDomain input parameter ([MS-
CAESO] section 4.3.3) to be FALSE. 

6.4.5.7   Close Connections 

If an SMB/CIFS session was previously established (see section 6.4.5.4), the client MUST disconnect 

as described in [MS-CIFS] section 3.4.4.8 specifying TaskLocalSMBSession. 

6.4.5.8   Reinitialize Local Protocols 

If the task succeeded, the client MUST reinitialize the [MS-SNTP] protocol. The client MAY do this by 
rebooting itself, or by any other supported mechanism.<11> 

6.5   Task Security 

This task is not secure by definition, as the password is derived from the ComputerName.NetBIOS 
and not exchanged in a secure manner. Sections 7 and 8 describe more secure versions of domain 
join. 

Upon successful completion of this task by a client already joined to a domain, the client's machine 
account in the old domain will be left as it is. The administrator of the old domain should consider 
disabling or deleting the old machine account as a security best practice. 

Please refer to the Security section of this specification and the Security sections of the referenced 

protocol Technical Documents (TDs) for protocol-specific security issues. 

%5bMS-SNTP%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-SNTP%5d.pdf


 

82 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

7   Joining a Domain by Creating an Account via SAMR 

This section describes the process of joining a client computer to a domain by creating an account 
via the SAMR protocol ([MS-SAMR]). This task shares many of the other actions in establishing the 
relationship between the client and the domain controller with the task in section 6, which will be 
cross referenced where appropriate. 

7.1   Task Overview 

7.1.1   Task Purpose 

The purpose of this task is to securely join a client computer to a domain by creating an account for 
the client computer as part of the domain join via the SAMR protocol. 

7.1.2   Task Applicability 

This task is applicable to a client attempting to join a domain securely using the SAMR protocol. The 

credentials of a Domain Administrator are required to perform this task. 

7.1.3   Task Use Cases 

7.1.3.1   Stakeholders and Interests Summary 

Client Administrator: The client administrator is the administrator of the client computer, 
interested in joining the client computer to the domain. 

Client Computer: The client computer that is being joined to the Domain. 

Domain Administrator: The domain administrator is the administrator of the Domain. The Domain 
Administrator supplies the credentials to this task for creating and configuring the machine account 
on the domain controller. After the join is completed, the Domain Administrator is able to influence 
the client computer via other protocols; see sections 3.1 and 3.4, and [MS-WSO], for further details. 

Domain Controller: The domain controller is a computer providing domain services to domain 
clients. The client creates and configures a machine account on the domain controller during task 
processing. 

7.1.3.2   Supporting Actors and Task Interests Summary 

This Task depends on the following supporting actors for the specified interests: 

SMB protocol ([MS-SMB2], [MS-SMB], or [MS-CIFS]), for opening/closing SMB sessions to a DC. 

The Task does not require that any specific SMB protocol be used. 

[MS-SAMR] protocol, for creating a client computer account on a DC. 

[MS-NRPC] protocol, for locating a DC, for establishing a Netlogon binding to a DC, and for 

enumerating the trusted domains, and for updating the machine account password. 

[MS-LSAD] protocol, for retrieval of information about a domain from a DC. 

[MS-DRSR] protocol, for searching for the client computer account on a DC. 

[RFC2251] protocol, for updating attributes on the client computer account on a DC. 

%5bMS-SAMR%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-LSAD%5d.pdf
%5bMS-DRSR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325


 

83 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

There are no other systems or tasks in which this Task is an actor. 

7.1.3.3   Use Case Diagrams 

 

Figure 29: Use case diagram; join a domain by creating an account via SAMR 

7.1.3.4   Join a Client Computer to a Domain by Creating an Account via SAMR — 

Client Computer 

The only use case for this task is a client administrator joining the client computer to a domain by 
providing domain administrator's credentials. The client creates an account for the client 

computer in the domain via the SAMR protocol using domain administrator's credentials.  

Goal: Join a client computer to a domain by creating an account for the client computer in the 

domain via SAMR. 

Context of Use: This task is invoked by the client administrator in order to enable the client 
computer to access the services and resources in a domain, as well as provide the domain members 
access to the client computer. See sections 3.1 and 3.4 for other motivations for joining a domain. 

Primary Actor: The client administrator is the primary actor who initiates joining the client 

computer to a domain. The client administrator invokes commands/applications on the client that 
initiate the current task. 

Direct Actor: The client computer joining the domain. 

Supporting Actors: All supporting actors are specified in section 7.1.3.2. 

Stakeholders and Interests: There are no other stakeholders for the current task besides those 
listed under Primary Actor, Direct Actor, and Supporting Actors sections as presented earlier. 

Precondition: The preconditions for this use case are the same as those listed for the task in 

section 7.2.3. 

Minimal Guarantees: this use case guarantees that upon failure, the local client computer state 
defined in section 4.3.1.1 is unchanged. 

Success Guarantee: The client is joined to the domain. 

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf


 

84 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Trigger: This use case is triggered by the client administrator to join the client to a domain. 

Main Success Scenario: 

1. The client administrator initiates the domain join task on the client computer. 

2. The client locates a domain controller using the Locate a Domain Controller Task (see section 5). 

3. The client opens a secure connection to the domain controller using Domain Administrator's 
supplied credentials and retrieves domain information. 

4. The client uses domain administrator's credentials and sets up an account in the domain for 
itself. 

5. The client determines the trusted domains. 

6. The client updates the client account in the domain. 

7. The client updates the local client state. 

8. The client reinitializes local protocols. 

Extensions: None. 

7.2   Task Context 

This section describes the relationship between this Task and its environment. 

7.2.1   Task Environment 

The task environment is the same as described in section 6.2.1. 

7.2.2   Task Relationships 

This task builds on the Common Task Information (see section 4) which is shared with all of the 
tasks in this document. 

7.2.2.1   Black Box Relationship Diagrams 

The following diagram illustrates the system as the client computer joins the domain by creating a 
new account on the domain controller via the SAMR protocol. 



 

85 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 30: Client machine joining a domain by creating an account via SAMR 

7.2.2.2   Task Dependencies 

This task depends on the following: 

At least one domain controller that is available. 

A domain controller that is located using the DsrGetDcNameEx2 method of the local [MS-NRPC] 

server. 

7.2.2.3   Task Influences 

None. 

7.2.3   Task Assumptions and Preconditions 

The following are the success conditions for this task: 

The credentials of an Administrator of the Domain who can create machine accounts in the 

domain are available to the Client Administrator. 

7.2.4   Task Versioning and Capability Negotiation 

None. 

%5bMS-NRPC%5d.pdf


 

86 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

7.3   Task Architecture 

7.3.1   Task Architectural Constraints 

This task has the following architectural constraints: 

The client computer can be joined to only a single domain at a time. 

Only one instance of this task MUST run on the client computer at any given time. As the task 

aims to join the client computer to a single domain, it does not support multiple, parallel 
executions. 

This task MAY be run a second time following a previous successful completion, in order to join 

the client computer to a different domain. 

This task MAY be run a second time following a previous unsuccessful run, as an unsuccessful run 

makes no changes to the client state. 

This task MUST NOT make assumptions about distributed state, such as the machine account on 

the domain controller. 

7.3.2   Task Abstract Data Model 

This section describes state established, used, and maintained by processing rules of this Task. 
State may be volatile or persisted. State may pertain to one, some, or all instances of the Task. The 
Task's state consists of the values of the named data elements (also called state variables) 
presented in this section. The overall organization of the data elements, with their names, is the 
Abstract Data Model. It is intended to facilitate the reader's conceptual understanding of the 

specification. While a Task's processing rules may depend upon associations established by the 
structure of its Abstract Data Model, such association can be achieved in other ways. 
Implementations may depart from this model so long as their external behavior remains consistent 
with that described in this document. 

The following are the in-memory values used by the task. These values are not persisted. 

Name Type Description 

TaskLocalClientName string 

(Unicode) 

Contains the samAccountName attribute value 

for the account in the domain. 

TaskLocalPassword string 

(Unicode) 

Contains the password for the account in the 

domain. 

TaskLocalNewPassword string 

(Unicode) 

Contains a randomly generated password. 

TaskLocalDomainName.FQDN string 

(Unicode) 

Contains the FQDN(1) of the domain being joined. 

TaskLocalDomainName.NetBIOS string 

(Unicode) 

Contains the NetBIOS name of the domain being 

joined. 

TaskLocalForestNameFQDN string 

(Unicode) 

Contains the FQDN(1) of the forest containing the 

domain being joined. 

TaskLocalDomainController string 

(Unicode) 

Contains the name of the domain controller used 

by this task. 



 

87 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Name Type Description 

TaskLocalDomainSID SID Contains the SID of the domain being joined. 

TaskLocalDomainGUID GUID Contains the guid of the domain being joined. 

TaskLocalTrustedDomains Domains Contains a list of trusted domains for the domain 

being joined. 

TaskLocalClientAccountDN string 

(Unicode) 

Contains the Distinguished Name of the client 

account in the domain. 

TaskLocalSMBSession SMB/CIFS 

session 

Contains the returned SMB state for an SMB/CIFS 

session. 

TaskLocalAlreadyJoined Boolean Whether the client is already joined to a domain 

at the start of the task. 

The following client data model variables (section 4.3.1.1) are updated by the task during a 
successful completion: 

DomainSid 

DomainGuid 

DomainName (NetBIOS and FQDN Names) 

ClientName 

Password 

TrustedDomains 

7.3.3   Task Abstract Parameters 

This section describes data passed to an instance of this task at the time it is invoked or triggered. 
The parameters consist of the values of the named data elements presented in this section. The 
organization of a data element, with its names, is an Abstract Parameter. It is intended to facilitate 

the reader's conceptual understanding of the specification. While a task's processing rules could 
depend upon associations established by the structure of its Abstract Parameters, such association 
can be achieved in other ways. Implementations can depart from this abstraction so long as their 
external behavior remains consistent with that described in this document. 

The parameters to this task are as follows: 

Name Type Description Optional 

TaskInputDomainName string 

(Unicode) 

Specifies the NetBIOS or FQDN name 

of the domain to join. 

No 

TaskInputDomainController string 

(Unicode) 

Specifies the domain controller this 

task must use to complete the join. 

Yes 

TaskInputDomainAdminAccount string 

(Unicode) 

Specifies the name of a Domain 

Administrator account. 

No 

TaskInputDomainAdminPassword string Specifies the password for the No 



 

88 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Name Type Description Optional 

(Unicode) TaskInputDomainAdminAccount. 

7.3.4   Task Abstract Results 

This section describes data returned by an instance of this task to its caller. The results consist of 
the values of the named data elements presented in this section. The organization of a data 
element, with its names, is an Abstract Result. It is intended to facilitate the reader's conceptual 
understanding of the specification. While a task's processing rules might depend upon associations 
established by the structure of its Abstract Results, such association can be achieved in other ways. 

Implementations can depart from this abstraction so long as their external behavior remains 
consistent with that described in this document. 

The task returns the following results to the caller: 

Name Type Description 

TaskReturnStatus integer This task MUST return 0x00000000 on success. Error statuses generated 

by a failure during task processing are in the Win32 error space (a long 

data type), as specified in [MS-ERREF] section 2.2. 

Upon a successful task completion this task performs the following steps: 

1. Updates client ADM variables (section 4.3.1.1). The updated values are persisted, as specified in 
section 4.3.1.1, and are available for other protocols on the client to use. 

2. Starts the NetLogon Remote Protocol and configures it to run automatically at every system 
start up. 

3. Notifies the Certificate Autoenrollment system that the machine is joining the domain. 

4. Adds the Domain Administrators to the local Administrators group. 

5. Notifies the local MS-SNTP protocol that the machine is joining the domain (failures in this step 
are ignored). 

6. Creates or modifies a client computer account in the domain. 

Upon a failed task completion, this task will attempt to disable the computer account in the domain 
(only if the task created the account, as opposed to modifying an existing account), and will attempt 
to revert any local state changes as well. If the task is unable to disable the computer account upon 
failure, domain administrator intervention outside the scope of the task may be necessary to disable 
the account. If the task is unable to revert local state changes, administrator intervention outside 
the scope of the task may be necessary to reconfigure the client back to its original state. 

7.3.5   White-Box Relationships 

The following diagram represents the white-box relationships of the task within the client computer 

and with the domain controller. 

%5bMS-ERREF%5d.pdf


 

89 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 31: Task white-box relationships diagram 

7.3.6   Task Events 

7.3.6.1   Task Timers 

None. 

7.3.6.2   Task Non-Timer Events 

None. 

7.3.7   Task Architecture and Communication 

The following paragraphs document the boxes in the following diagram. 

Joining a Domain Task (Creating an Account via SAMR): This box represents the task, 

including the task ADM and processing (see section 7.4.5). This box invokes the local [MS-NRPC] 
server to locate a domain controller. This box interacts with the domain controller for achieving the 
goals of this task. This box also configures client ADM, several client local states and fires required 
triggers as a final step in a successful run. 

Client ADM, Group Membership: These boxes are configured by the Joining a Domain Task box 

as one of the final steps on a successful run of the task. 

Time Service, Cert Auto Enrollment Service: These boxes are signaled by the Joining a Domain 
Task box as one of the final steps on a successful run of the task. 

Netlogon Service: This box is configured by the Joining a Domain Task box as one of the final 
steps on a successful run of the task. 

%5bMS-NRPC%5d.pdf


 

90 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

SMB, Netlogon, LDAP, LSARPC, SAM RPC: These boxes represent the server-side 
implementations of the protocols used by this task, namely SMB, Netlogon, LDAP, LSAR and SAM 

RPC. 

 

Figure 32: Client joining a domain (creating an account via SAMR) – architecture and 

communication 

7.3.8   Task Processing Rules 

Abstract Parameters: As specified in section 7.3.3. 

Main Success Scenario: 

1. Locate a domain controller to be used during task processing (see section 7.4.5.1). 

2. Establish an SMB/CIFS session to the domain controller (see section 7.4.5.2). 

3. Retrieve domain information from the domain controller (see section 7.4.5.3). 

4. Create client computer account on the domain controller (see section 7.4.5.4). 

5. Enumerate domain trusts (see section 7.4.5.6). 

6. Update client computer account on the domain controller (see section 7.4.5.5). 

7. Update local state (see section 7.4.5.7). 

8. Close SMB/CIFS session (see section 7.4.5.9). 

9. Reinitialize local protocols (see section 7.4.5.10). 

Extensions: 



 

91 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

1. Unable to locate a domain controller, terminate task with error. 

2. Domain controller cannot be reached, terminate task with error. 

3. Domain information cannot be retrieved, terminate task with error. 

4. Computer account cannot be created, terminate task with error. 

5. Domain trust enumeration fails, attempt to disable the computer account on the DC and 
terminate task with error. 

6. Account update fails, attempt to disable the computer account on the DC and terminate task with 
error. 

7. Local state updates fail; attempt to disable the computer account on the DC and terminate task 
with error. 

7.3.9   Task Failure Scenarios 

The following are the common failure scenarios for the current task: 

Unable to Locate DC: If a domain controller in the domain TaskInputDomainName cannot be 
located, (1). The result is that the join task fails. This condition MAY occur if the network 
infrastructure is not configured correctly or is unavailable. 

Domain Controller Unavailable: If TaskLocalDomainController cannot be reached due to any 

reason while the client opens connections or queries or updates the domain controller (all the 
domain controller interactions), the join task fails. This failure MAY happen because of conditions on 
the domain controller or network disruptions. 

Authentication Fails: If the TaskInputDomainAdminAccount and derived 
TaskInputDomainAdminPassword do not authenticate the Client binding to the server (3, 4), 
further processing is not possible and the join task fails. 

Queries or Updates Fail on Domain Controller: If any of the queries or updates made to 

TaskLocalDomainController fails (2, 3, 4, 5, 6), the join task fails. This failure MAY happen 
because of conditions on the domain controller. 

Update fails on Client: Update to client local state fails (7) and as a result the join task fails. This 
failure MAY happen because of conditions on the client computer. 

7.4   Task Details 

This section contains the details that complete the descriptions in earlier sections of the document. 

These are needed to understand and implement this Task. 

7.4.1   Task Precondition Details 

Not applicable. 

7.4.2   Task Initialization of External Entities 

Once a domain controller is located using the DsrGetDcNameEx2 method of the local [MS-NRPC] 

server, communication is directly with the domain controller. 

%5bMS-NRPC%5d.pdf


 

92 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

7.4.3   Task Event Details 

7.4.3.1   Task Timer Details 

None. 

7.4.3.2   Task Non-Timer Event Details 

None. 

7.4.4   Task Architectural Details 

This task is a secure variant of that described in section 6 for joining a domain. The general process 

flow is as follows: The client is operating in the environment described in section 7.2.1. The client 
attempts to determine a domain controller in the domain it is required to join using the 
DsrGetDcNameEx2 method of the local [MS-NRPC] server. When the domain controller is 
determined, the client binds to the domain controller through a secure SMB authenticated using the 

domain administrator's credentials and retrieves various pieces of domain information. The client 
creates an account on the domain controller for itself using the domain administrator's credentials 
using the SAMR protocol. The client then retrieves domain trusts from the domain controller. The 

client then updates attributes on the client computer account on the domain controller. Finally, the 
client updates its own state to indicate that it has now joined the domain. The following figure shows 
the sequence diagram for this task, except for the shared steps, which can be referred to in section 
6.4.4. For details about locating a domain controller, refer to [MS-NRPC]. 

The following figure shows the network traffic for a typical main success scenario.  Note that the 
initial exchange (Locate a DC) is representative only of the traffic between the client and the 

selected domain controller; additional exchanges that might occur to other domain controllers are 
not represented. See [MS-NRPC] for additional details. 

%5bMS-NRPC%5d.pdf


 

93 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 33: Joining a domain (creating account via the SAMR protocol) task architectural 
details 

7.4.5   Task Processing Rule Details 

This section describes details for the steps identified in section 7.3.8. Unless otherwise specified, the 
processing falls through from one section to the next. 

The following flowchart for the current task shows the sequential steps in the task, as well as failure 
decisions taken based on the results in each step. 



 

94 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 34: Joining a domain (creating account via the SAMR protocol) task flowchart 

The abstract parameters specified in section 7.3.3 are passed to this task upon entry. 

The initial state of the in-memory task ADM is initialized as follows: 

TaskLocalClientName = ComputerName.NetBIOS "$" 

TaskLocalPassword = <undefined> 

TaskLocalNewPassword = <undefined> 

TaskLocalDomainSID = <undefined> 

TaskLocalDomainGUID = <undefined> 

TaskLocalDomainController = TaskInputDomainController 



 

95 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

TaskLocalClientAccountDN  = <undefined> 

TaskLocalDomainName = <undefined> 

TaskLocalForestNameFQDN = <undefined> 

TaskLocalSMBSession = <undefined> 

TaskLocalAlreadyJoined = FALSE if DomainSid is equal to NULL, TRUE otherwise 

7.4.5.1   Locate a Domain Controller 

This step of the task processing is the same as section 6.4.5.1, with the same actions on success 
and failure outcomes as described in that section. 

7.4.5.2   Establish Authenticated SMB Session 

The client MUST establish an authenticated SMB/CIFS session to the IPC$ share on the 
TaskLocalDomainController domain controller by invoking [MS-CIFS] section 3.4.4.7 specifying 
the following parameters: 

ServerName = TaskLocalDomainController.FQDN 

UserCredentials = TaskInputDomainAdminAccount \ TaskInputDomainAdminPassword 

Upon success, the client MUST store the results in TaskLocalSMBSession. 

7.4.5.3   Retrieve Domain Information 

The client MUST retrieve domain information from the domain controller, over the secure SMB/CIFS 
session established in the preceding step, by using the steps described in section 6.4.5.3. 

7.4.5.4   Create Client Computer Account 

The client MUST use the authenticated SMB connection established in the prior step as a transport 
for remote calls to the domain controller in this section. The client MUST create an account for the 

client computer in the domain using the following steps: 

1. The client MUST bind to the named pipe endpoint \PIPE\samr, as shown in [MS-SAMR] section 
2.1.  

2. The client MUST connect to the SAM RPC server on the domain controller using one of the 
SamrConnect variants. See [MS-SAMR] section 1.7.2 for information about invoking the 

SamrConnect variants in order to the determine version and method supported by the server. 
See [MS-SAMR] section 3.1.5.1 for using the Open pattern in the SAM interface. 

ServerName = TaskLocalDomainController.FQDN 

DesiredAccess = GENERIC_ALL 

3. The client MUST call SamrOpenDomain ([MS-SAMR] section 3.1.5.1.5) specifying the following 
parameters:  

DesiredAccess = GENERIC_ALL 

DomainSid = TaskLocalDomainSID from the task ADM. 

4. The client MUST attempt to create the account on the domain controller. If this fails because of 
an existing account, the client MUST attempt to obtain a handle to the existing account.  

%5bMS-CIFS%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf


 

96 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

The client MUST call SamrCreateUser2InDomain ([MS-SAMR] section 3.1.5.4.4) specifying the 
following parameters: 

Name = TaskLocalClientName ADM element. 

AccountType = USER_WORKSTATION_TRUST_ACCOUNT as specified in [MS-SAMR]. 

DesiredAccess = GENERIC_ALL 

Upon success, execution MUST continue at step 6. 

If an error is returned indicating that the account already exists, execution MUST continue at step 
5. 

Any other error will fail the task. 

5. This processing step MUST be executed if it was determined in the previous call that client 
account already exists. 

1. The client MUST obtain the account RID of the existing account by calling the 
SamrLookupNamesInDomain ([MS-SAMR] section 3.1.5.11.2) method specifying the following 
parameter values: 

Names = TaskLocalClientName ADM element. 

Count = 1 

2. The client MUST call the SamrOpenUser ([MS-SAMR] section 3.1.5.1.9) method specifying 

the following parameter values: 

DesiredAccess = GENERIC_ALL 

UserId = RID obtained in the previous call. 

Upon successful return, the UserHandle parameter contains the handle to the existing 

computer account. 

Any error MUST be treated as a failure. This call sequence MUST be abandoned and step 7 
(Closing Handles) as follows MUST be invoked before exiting this step. 

6. The client MUST populate TaskLocalNewPassword with a cryptographically strong random value. 
The password is treated as a directory string, even if the actual values generated do not map 
to actual glyphs in the Unicode character set.<12> 

7. The client MUST set the new client account password by calling the SamrSetInformationUser2 
method ([MS-SAMR] section 3.1.5.6.4) specifying the following parameters: 

UserInformationClass, Buffer = TaskLocalPassword task ADM element MUST be present in any 
information buffer used. 

8. Regardless of whether an error was encountered in any of the preceding calls, any SAM RPC 

domain controller handles opened MUST be closed using SamrCloseHandle method ([MS-SAMR] 
section 3.1.5.13.1).  

Upon successful completion of the preceding call sequence, the client has successfully created or 
updated the client account in the domain. The following task ADM elements are updated as well: 

TaskLocalPassword 

%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf


 

97 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Any failure in any of the calls in this step is treated as a failure of this step. If this step fails, the task 
MUST start executing the rollback steps in section 7.4.5.8, and the task MUST fail. 

7.4.5.5   Update Client Computer Account 

The client follows these steps to update account attributes.<13> 

1. The client MUST bind to the DRS RPC endpoint ([MS-DRSR] section 2.1) on 
TaskLocalDomainController. 

2. The client MUST invoke the IDL_DRSCrackNames method ([MS-DRSR] section 4.1.4) with the 
following parameter values: 

rpNames = TaskLocalDomainName.NetBIOS "\" TaskLocalClientName 

3. Upon success, the client MUST update the following ADM elements: 

TaskLocalClientAccountDN = Distinguished Name (DN) of the client account returned in the 

preceding call. 

4. The client MUST connect to the LDAP service on TaskLocalDomainController as per LDAP 
specification [RFC2251], and MUST perform an LDAP bind to authenticate the connection using 
TaskLocalClientName and TaskLocalPassword as credentials. using the process described in 
[MS-ADTS] section 5.1.1.<14> 

5. The client SHOULD update the following attributes on the client account with the indicated 
values, using the LDAP connection created in step 4.<15> 

Attributes Values 

serverPrincipalNam

e 

([MS-ADA3] section 

2.253) 

"host/ComputerName.NetBIOS", "host/ 

ComputerName.NetBIOS"."TaskLocalDomainName.FQDN", 

"RestrictedKrbHost/ComputerName.NetBIOS", 

"RestrictedKrbHost/ComputerName.NetBIOS"."TaskLocalDomainName.FQDN"

. 

dNSHostName 

([MS-ADA1] section 

2.185) 

Directory string value set to 

"TaskLocalDomainName.FQDN"."TaskLocalDomainName.FQDN" 

6. The client MUST unbind from the LDAP service as per LDAP specification [RFC2251]. This MUST 
be performed even if errors were encountered in the preceding call sequence. The errors in this 
operation are ignored. 

If this step fails, the task MUST start executing the rollback steps in section 7.4.5.8, and the task 

MUST fail. 

7.4.5.6   Enumerate Domain Trusts 

The client MUST enumerate domain trusts by using the steps specified in section 6.4.5.5. If this step 
fails, the task MUST start executing the rollback steps in section 7.4.5.8, and the task MUST fail. 

7.4.5.7   Update Local State 

The client MUST update its local state using the steps specified in section 6.4.5.6. 

%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf
%5bMS-ADA3%5d.pdf
%5bMS-ADA1%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325


 

98 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

If this step fails, the task MUST execute the rollback steps in section 7.4.5.8, and the task MUST fail. 
If this step succeeds, task execution continues at section 7.4.5.9. 

7.4.5.8   Disable New Computer Account on Domain Controller 

This step is only executed upon failure of one of the previous steps. 

If the task actually created the computer account on the DC (this would be the case if the 
SamrCreateUser2InDomain call succeeded in step 4 of section 7.4.5.4), the task MUST attempt 
to disable that computer account on the DC using the following steps. 

1. The client MUST connect to the SAM RPC server on the domain controller using one of the 
SamrConnect variants. See [MS-SAMR] section 1.7.2 for information about invoking the 
SamrConnect variants in order to the determine version and method supported by the server. 

See [MS-SAMR] section 3.1.5.1 for using the Open pattern in the SAM interface. 

ServerName = TaskLocalDomainController.FQDN 

DesiredAccess = SAM_SERVER_CONNECT | SAM_SERVER_LOOKUP_DOMAIN 

2. The client MUST call SamrOpenDomain ([MS-SAMR] section 3.1.5.1.5) specifying the following 
parameters: 

DesiredAccess = DOMAIN_LOOKUP 

DomainSid = TaskLocalDomainSID 

3. The client MUST obtain the account RID of the new computer account by calling the 
SamrLookupNamesInDomain ([MS-SAMR] section 3.1.5.11.2) method specifying the following 
parameter values: 

Names = TaskLocalClientName 

Count = 1 

4. The client MUST call the SamrOpenUser ([MS-SAMR] section 3.1.5.1.9) method specifying the 

following parameter values: 

DesiredAccess = USER_FORCE_PASSWORD_CHANGE | USER_READ_ACCOUNT | 
USER_WRITE_ACCOUNT 

UserId = RID obtained in the previous call. 

If the SamrOpenUser call fails, the client MUST retry the call specifying the following parameter 
values: 

DesiredAccess = USER_FORCE_PASSWORD_CHANGE | USER_READ_ACCOUNT 

UserId = RID obtained in the previous call. 

5. The client MUST query the current value of UserAccountControl on the computer account using 

the SamrQueryInformationUser method ([MS-SAMR] section 3.1.5.5.6), specifying the 
following parameters: 

UserHandle = UserHandle returned in the previous call 

UserInformationClass = UserControlInformation ([MS-SAMR] section 2.2.7.28) 

%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf


 

99 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

6. If the USER_ACCOUNT_DISABLED bit is not set in the UserAccountControl value returned by 
the previous call, the client MUST disable the account using the SamrSetInformationUser2 

method ([MS-SAMR]section 3.1.5.6.4), specifying the following parameters: 

UserHandle = UserHandle returned in step 4 

UserInformationClass = UserControlInformation ([MS-SAMR] section 2.2.7.28) 

Control.UserAccountControl = (value of UserAccountControl retrieved in the previous call) | 
USER_ACCOUNT_DISABLED 

7. The client MUST close the previous handles using the SamrCloseHandle method ([MS-SAMR] 
section 3.1.5.13.1) in the following order: 

1. Close the user handle opened in step 4. 

2. Close the domain handle opened in step 2. 

3. Close the server handle opened in step 1. 

7.4.5.9   Close Connections 

If an SMB/CIFS session was previously established (see section 7.4.5.2), the client MUST disconnect 
as described in [MS-CIFS], section 3.2.4.24 specifying TaskLocalSMBSession. 

7.4.5.10   Reinitialize Local Protocols 

If the task succeeded, the client MUST reinitialize local protocols using the steps specified in section 
6.4.5.8. 

7.5   Task Security 

Please refer to the Security section of this specification and the Security sections of the referenced 
protocol Technical Documents (TDs). 

Upon successful completion of this task by a client already joined to a domain, the client's machine 
account in the old domain will be left as it is. The administrator of the old domain should consider 
disabling or deleting the old machine account as a security best practice. 

%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-CIFS%5d.pdf


 

100 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

8   Joining a Domain by Creating an Account via LDAP 

This section describes the process of joining a client computer to a domain by creating an account 
via Lightweight Directory Access Protocol (LDAP). This is a secure way of joining the domain. This 
task shares many of the other actions in establishing the relationship between the client and the 
domain controller with the task in section 6. 

8.1   Task Overview 

8.1.1   Task Purpose 

The purpose of this task is to securely join a client computer to a domain by creating an account for 
the client computer as part of the domain join via the LDAP interface.  

8.1.2   Task Applicability 

This task is applicable to a client attempting to join a domain securely using the LDAP interface. The 

credentials of a Domain Administrator are required to perform this task. 

8.1.3   Task Use Cases 

8.1.3.1   Stakeholders and Interests Summary 

Client Administrator: The client administrator is the administrator of the client computer, 
interested in joining the client computer to the domain. 

Client Computer: The client computer that is being joined to the domain. 

Domain Administrator: The domain administrator is the administrator of the domain. The domain 
administrator supplies the credentials to this task for creating and configuring the machine account 
on the domain controller. After the join is completed, the domain administrator is able to influence 
the client computer via other protocols; see sections 3.1 and 3.4, and [MS-WSO], for further details. 

Domain Controller: The domain controller is a computer providing domain services to domain 
clients. The client creates and configures a machine account on the domain controller during task 
processing. 

8.1.3.2   Supporting Actors and Task Interests Summary 

This task depends on the following supporting actors for the specified interests: 

[MS-NRPC] protocol, for locating a domain controller (DC), for establishing a Netlogon binding to 

a DC and for enumerating the trusted domains. 

[RFC2251] protocol, for creating the client computer account on a DC and for modifying its 

attributes. 

There are no other systems or tasks in which this task is an actor. 

%5bMS-NRPC%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325


 

101 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

8.1.3.3   Use Case Diagrams 

 

Figure 35: Use case diagram; join a domain by creating an account via LDAP 

8.1.3.4   Join a Client Computer to a Domain by Creating an Account via LDAP — 

Client Computer 

The only use case for this task is a client administrator joining the client computer to a domain by 
providing domain administrator's credentials. The client creates an account for the client computer 
in the domain via LDAP using domain administrator's credentials.  

Goal: Join a Client Computer to a Domain by creating an account for the client computer in the 
domain via LDAP. 

Context of Use: This task is invoked by the client computer administrator in order to enable the 
client computer to access the services and resources in a domain as well as provide the domain 
members access to the client computer. See sections 3.1 and 3.4 for other motivations for joining a 
domain. 

Primary Actor: The Client Administrator is the primary actor who initiates joining the client 
computer to a domain. The Client Administrator invokes commands/applications on the client that 

initiate the current task. 

Direct Actor: The Client Computer joining the domain. 

Supporting Actors: All supporting actors are specified in section 8.1.3.2. 

Stakeholders and Interests: There are no other stakeholders for the current task besides those 
listed under Primary Actor, Direct Actor, and Supporting Actors sections as presented earlier. 

Precondition: The preconditions for this use case are the same as those listed for the task in 

section 8.2.3. 

Minimal Guarantees: This use case guarantees that a client is either joined to the domain or not 
joined to a domain upon completion of this use case. 

Success Guarantee: The client is joined to the domain. 



 

102 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Trigger: This use case is triggered by the client administrator to join the client to a domain. 

Main Success Scenario: 

1. The Client Administrator initiates the Joining a Domain task on the client computer. 

2. The client locates a domain controller. 

3. The client connects to the LDAP server on the domain controller and performs a bind to establish 
a secure LDAP connection using the Domain Administrator's credentials. 

4. The client retrieves domain information. 

5. The client uses LDAP to create an account in the domain for itself. 

6. The client determines the trusted domains. 

7. The client updates the client account in the domain. 

8. The client updates the local client state. 

9. The client reinitializes local protocols. 

Extensions: None. 

8.2   Task Context 

This section describes the relationship between this Task and its environment. 

8.2.1   Task Environment 

This task assumes that the client is operating in a domain environment with at least one domain 
controller running. If not, the join task will fail. 

8.2.2   Task Relationships 

This task builds on the Common Task Information (see section 4), which is shared with all of the 
tasks in this document. 

8.2.2.1   Black Box Relationship Diagrams 

The following diagram shows the system as the client computer joins the domain by creating a new 
account via the Lightweight Directory Access Protocol (LDAP). 



 

103 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 36: Client machine joining a domain by creating an account via LDAP 

8.2.2.2   Task Dependencies 

This task depends on the following:  

At least one domain controller being available. 

A domain controller being located using the DsrGetDcNameEx2 method of the local [MS-NRPC] 

server. 

8.2.2.3   Task Influences 

None. 

8.2.3   Task Assumptions and Preconditions 

The following are the success conditions for this task: 

The credentials of an Administrator of the Domain who can create machine accounts in the 

domain are available to the Client Administrator. 

8.2.4   Task Versioning and Capability Negotiation 

None. 

8.3   Task Architecture 

8.3.1   Task Architectural Constraints 

This task has the following architectural constraints: 

The client computer can be joined to only a single domain at a time. 

Only one instance of this task MUST run on the client computer at any given time. As the task 

aims to join the client computer to a single domain, it does not support multiple, parallel 

executions. 

%5bMS-NRPC%5d.pdf


 

104 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

This task MAY be run a second time following a previous successful completion, in order to join 

the client computer to a different domain. 

This task MAY be run a second time following a previous unsuccessful run, as an unsuccessful run 

makes no changes to the client state. 

This task MUST NOT make assumptions about distributed state, such as the machine account on 

the domain controller. 

8.3.2   Task Abstract Data Model 

This section describes state established, used, and maintained by processing rules of this Task. 

State may be volatile or persisted. State may pertain to one, some, or all instances of the Task. The 
Task's state consists of the values of the named data elements (also called state variables) 
presented in this section. The overall organization of the data elements, with their names, is the 
Abstract Data Model. It is intended to facilitate the reader's conceptual understanding of the 
specification. While a Task's processing rules may depend upon associations established by the 
structure of its Abstract Data Model, such association can be achieved in other ways. 

Implementations may depart from this model so long as their external behavior remains consistent 

with that described in this document. 

The following are the in-memory values used by the Task. These values are not persisted. 

Name Type Description 

TaskLocalClientName string (Unicode) Contains the samAccountName 

attribute value for the account in the 

domain. 

TaskLocalPassword string (Unicode) Contains the password for the account 

in the domain. 

TaskLocalDomainName.FQDN string (Unicode) Contains the FQDN(1) of the domain 

being joined. 

TaskLocalDomainName.NetBIOS string (Unicode) Contains the NetBIOS name of the 

domain being joined. 

TaskLocalForestNameFQDN string (Unicode) Contains the FQDN(1) of the forest 

containing the domain being joined. 

TaskLocalDomainController string (Unicode) Contains the name of the domain 

controller used by this task. 

TaskLocalDomainSID SID Contains the SID of the domain being 

joined. 

TaskLocalDomainGUID GUID Contains the GUID of the domain 

being joined. 

TaskLocalTrustedDomains Domains Contains a list of trusted domains for 

the domain being joined. 

TaskLocalClientAccountDN string (Unicode) Contains the Distinguished Name of 

the client account in the domain. 

TaskLocalAlreadyJoined Boolean Whether the client is already joined to 

a domain at the start of the task. 



 

105 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Name Type Description 

TaskLocalLDAPConnection ADCONNECTION_HANDLE An ADCONNECTION_HANDLE that 

refers to an instance of the 

ADConnection ADM element specified 

in [MS-ADTS] section 7.3. 

The following client data model variables (section 4.3.1.1) are updated by the task during a 

successful completion: 

DomainSid 

DomainGuid 

DomainName (NetBIOS and FQDN Names) 

ClientName 

Password 

TrustedDomains 

8.3.3   Task Abstract Parameters 

This section describes data passed to an instance of this task at the time it is invoked or triggered. 

The parameters consist of the values of the named data elements presented in this section. The 
organization of a data element, with its names, is an Abstract Parameter. It is intended to facilitate 
the reader's conceptual understanding of the specification. While a task's processing rules could 
depend upon associations established by the structure of its Abstract Parameters, such association 
can be achieved in other ways. Implementations can depart from this abstraction so long as their 
external behavior remains consistent with that described in this document. 

The parameters to this task are as follows: 

Name Type Description Optional 

TaskInputDomainName string 

(Unicode) 

Specifies the NetBIOS or FQDN name of 

the domain to join. 

No 

TaskInputDomainController string 

(Unicode) 

Specifies the domain controller this task 

must use to complete the join.  

Yes 

TaskInputDomainAdminAccount string 

(Unicode) 

Specifies the name of a Domain 

Administrator account. 

No 

TaskInputDomainAdminPassword string 

(Unicode) 

Specifies the password for the 

TaskInputDomainAdminAccount. 

No 

TaskInputAccountOU string 

(Unicode) 

Specifies the Distinguished Name (DN) of 

the OU to create the computer account in. 

Yes 

8.3.4   Task Abstract Results 

This section describes data returned by an instance of this task to its caller. The results consist of 
the values of the named data elements presented in this section. The organization of a data 
element, with its names, is an Abstract Result. It is intended to facilitate the reader's conceptual 
understanding of the specification. While a task's processing rules might depend upon associations 

%5bMS-ADTS%5d.pdf


 

106 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

established by the structure of its Abstract Results, such association can be achieved in other ways. 
Implementations can depart from this abstraction so long as their external behavior remains 

consistent with that described in this document. 

The task returns the following results to the caller:  

Name Type Description 

TaskReturnStatus integer This task MUST return 0x00000000 on success. Error statuses generated 

by a failure during task processing are in the Win32 error space (a long 

data type), as specified in [MS-ERREF] section 2.2. 

Upon a successful task completion this task performs the following: 

1. Updates client ADM variables (section 4.3.1.1). The updated values are persisted, as specified in 
section 4.3.1.1, and are available for other protocols on the client to use. 

2. Starts the NetLogon Remote Protocol and configures it to run automatically at every system 

start up. 

3. Notifies the Certificate Autoenrollment system that the machine is joining the domain. 

4. Adds the Domain Administrators to the local Administrators group ([MS-SAMR] section 3.1.7.1). 

5. Notifies the local MS-SNTP protocol that the machine is joining the domain (failures in this step 
are ignored). 

6. Creates or modifies a client computer account in the domain. 

Upon a failed task completion, this task will attempt to delete the computer account in the domain 
(only if the task created the account, as opposed to modifying an existing account), and will attempt 

to revert any local state changes as well. If the task is unable to disable the computer account upon 
failure, domain administrator intervention outside the scope of the task may be necessary to delete 
the account. If the task is unable to revert local state changes, administrator intervention outside 

the scope of the task may be necessary to reconfigure the client back to its original state. 

8.3.5   White-Box Relationships 

The following diagram represents the white-box relationships of the task within the client computer 

and with the domain controller.  

%5bMS-ERREF%5d.pdf
%5bMS-SAMR%5d.pdf


 

107 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 37: Task white-box relationships diagram 

8.3.6   Task Events 

8.3.6.1   Task Timers 

None. 

8.3.6.2   Task Non-Timer Events 

None. 

8.3.7   Task Architecture and Communication 

The following details document boxes in the diagram as shown: 

Joining a Domain Task (Creating an Account via LDAP): This box represents the task, 
including the task ADM and processing (see section 8.4.5). This box invokes the local [MS-NRPC] 

server to locate a domain controller. This box interacts with the domain controller for achieving the 
goals of this task. This box also configures client ADM, several client local states and fires required 
triggers as a final step in a successful run. 

Client ADM, Group Membership: These boxes are configured by the Joining a Domain Task box 
as one of the final steps on a successful run of the task. 

Time Service, Cert Auto Enrollment svc: These boxes are signaled by the Joining a Domain Task 
box as one of the final steps on a successful run of the task. 

Netlogon Service: This box is configured by the Joining a Domain Task box as one of the final 
steps on a successful run of the task. 

LDAP: This box represents the server-side implementations of LDAP. 

%5bMS-NRPC%5d.pdf


 

108 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Directory: This box represents the Directory Service running on the Domain Controller and it holds 
the newly created account for the client computer. 

 

Figure 38: Client joining a domain (Creating an Account via LDAP) – architecture and 

communication 

8.3.8   Task Processing Rules 

Abstract Parameters: As specified in section 8.3.3. 

Main Success Scenario: 

1. Locate a domain controller (DC) to be used during task processing (see section 8.4.5.1). 

2. Establish an LDAP connection to the domain controller (see section 8.4.5.2). 

3. Retrieve domain information from the domain controller (see section 8.4.5.3). 

4. Create client computer account on the domain controller (see section 8.4.5.4). 

5. Enumerate domain trusts (see section 8.4.5.5). 

6. Update local state (see section 8.4.5.6). 

7. Close connections (see section 8.4.5.8). 

8. Reinitialize local protocols (see section 8.4.5.9). 

Extensions: 

1. Unable to locate a domain controller, terminate task with error. 

2. Unable to establish to the LDAP interface to the domain controller, terminate task with error. 



 

109 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

3. Domain information cannot be retrieved, terminate task with error. 

4. Computer account cannot be created, terminate task with error. 

5. Domain trust enumeration fails, rollback changes on the DC (section 8.4.5.7) and terminate task 
with error. 

6. Update local state fails, rollback changes on the DC (section 8.4.5.7) and terminate task with 
error. 

8.3.9   Task Failure Scenarios 

The following are the common failure scenarios for the current task: 

Unable to Locate DC: If a domain controller in the domain identified by 

TaskInputDomainName cannot be located, (step 1 in Main Success Scenario, section 8.3.8). 
The result is that the join task fails. This condition MAY occur if the network infrastructure is not 
configured correctly or is unavailable. 

Domain Controller Unavailable: If TaskLocalDomainController cannot be reached due to 

any reason while the client opens connections or queries or updates the domain controller (all the 
domain controller interactions in Main Success Scenario, section 8.3.8), the task fails. 

Authentication Fails: If the TaskInputDomainAdminAccount and derived 

TaskInputDomainAdminPassword do not authenticate the Client binding to the server (step 2 
in Main Success Scenario, section 8.3.8), further processing is not possible and the task fails. 

Queries or Updates fail on domain controller: If any of the queries or updates made to 

TaskLocalDomainController fails (in steps 2 through 5 in Main Success Scenario, section 
8.3.8), the task fails. 

Update fails on client: Update to client local state fails (6) and as a result the join task fails. 

This failure MAY happen because of conditions on the client computer. 

8.4   Task Details 

This section contains the details that complete the descriptions in earlier sections of the document. 
These are needed to understand and implement this Task. 

8.4.1   Task Precondition Details 

Not applicable. 

8.4.2   Task Initialization of External Entities 

Once a domain controller is located using the Locate Domain Controller task, communication is 
directly with the domain controller. 

8.4.3   Task Event Details 

8.4.3.1   Task Timer Details 

None. 



 

110 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

8.4.3.2   Task Non-Timer Event Details 

None. 

8.4.4   Task Architectural Details 

This task is a variant of the Joining a Domain by Creating Account via SAMR task (section 7). In this 
task, the client computer uses the LDAP protocol for connecting to, querying and updating the 
domain controller. 

The client determines a domain controller in the domain it is joining using the DsrGetDcNameEx2 
method of the local [MS-NRPC] server. The client then binds to the domain controller's LDAP 
interface and opens a secure connection, using the Domain Administrator's credentials for 

authentication. The client uses the established connection for the subsequent queries and updates to 
the domain controller. 

The client retrieves the necessary domain information, then creates the client computer account on 
the domain controller. The client then retrieves domain trusts from the domain controller. The client 

then updates SPN list for the client computer account on the domain controller. Finally, the client 
updates its local state. 

The following figure shows the network traffic for a typical main success scenario, where 
TaskInputAccountDN was not specified and the client account does not already exist on the 
domain controller. Note that the initial exchange (Locate a DC) is representative only of the traffic 
between the client and the selected domain controller; additional exchanges that may occur to other 
domain controllers are not represented. See section 5.4.4 for additional details. 

%5bMS-NRPC%5d.pdf


 

111 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 39: Joining a Domain (Creating account via LDAP) task architectural details 

8.4.5   Task Processing Rule Details 

This section describes details for the steps identified in section 8.3.8. Unless otherwise specified, the 
processing falls through from one section to the next. 

The following flowchart for the current task shows the sequential steps in the task, as well as failure 

decisions taken based on the results in each step. 



 

112 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 40: Joining a Domain (Creating account via LDAP) Task flowchart 

The abstract parameters specified in section 8.3.3 are passed to this task upon entry. 

The initial state of the in-memory task ADM is initialized as follows: 

TaskLocalClientName = ComputerName.NetBIOS "$"  

TaskLocalPassword = <undefined>  

TaskLocalDomainSID = <undefined> 



 

113 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

TaskLocalDomainGUID = <undefined> 

TaskLocalDomainController = TaskInputDomainController 

TaskLocalDomainName = <undefined> 

TaskLocalForestNameFQDN = <undefined> 

TaskLocalClientAccountDN = <undefined> 

TaskLocalAlreadyJoined = FALSE if DomainSid is equal to NULL, TRUE otherwise 

8.4.5.1   Locate a Domain Controller 

This step of the task processing is the same as section 6.4.5.1, with the same actions on success 
and failure outcomes as described in that section. 

8.4.5.2   Establish Authenticated LDAP Connection 

 

1. The client invokes the "Initializing an ADConnection" task ([MS-ADTS] section 7.6.1.1) with the 

following parameters: 

TaskInputTargetName: TaskLocalDomainController 

TaskInputPortNumber: 389 

Upon success, the result is stored in TaskLocalLDAPConnection. 

2. The client invokes the "Setting an LDAP option on an ADConnection" task ([MS-ADTS] section 
7.6.1.2) with the following parameters: 

TaskInputADConnection: NewADConnection 

TaskInputOptionName: LDAP_OPT_AUTH_INFO 

TaskInputOptionValue: 

bindMethod: SASL, using the GSS-SPNEGO protocol ([MS-ADTS] section 5.1.1.1) 

name: TaskInputDomainAdminAccount 

password: TaskInputDomainAdminAccountPassword 

3. The client invokes the "Setting an LDAP option on an ADConnection" task ([MS-ADTS] section 
7.6.1.2) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputOptionName: LDAP_OPT_AREC_EXCLUSIVE 

TaskInputOptionValue: TRUE 

4. The client invokes the "Setting an LDAP option on an ADConnection" task ([MS-ADTS] section 

7.6.1.2) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputOptionName: LDAP_OPT_ENCRYPT 

TaskInputOptionValue: TRUE 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

114 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

5. The client invokes the "Setting an LDAP option on an ADConnection" task ([MS-ADTS] section 
7.6.1.2) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputOptionName: LDAP_OPT_REFERRALS 

TaskInputOptionValue: FALSE 

6. The client invokes the "Establishing an ADConnection" task ([MS-ADTS] section 7.6.1.3) with the 
TaskInputADConnection parameter set to TaskLocalLDAPConnection. 

7. The client invokes the "Performing an LDAP Bind on an ADConnection" task ([MS-ADTS] section 
7.6.1.4) with the TaskInputADConnection parameter set to NewADConnection. 

8.4.5.3   Retrieve Domain Information 

1. The client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] 

section 7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP SearchRequest message [RFC2251] section 4.5.1 as follows: 

baseObject: Null DN 

scope: baseObject 

filter: ObjectClass=* 

attributes: defaultNamingContext, rootDomainNamingContext, 

configurationNamingContext, supportedControl 

derefAliases: neverDerefAliases 

typesOnly: false 

TaskOutputResultMessages: LDAPResultMessages 

Upon success, the client MUST set the following task ADM elements: 

TaskLocalDomainName.FQDN = (value of defaultNamingContext reformatted as an FQDN) 

TaskLocalForestName.FQDN = (value of rootDomainNamingContext reformatted as an FQDN) 

2. The client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] 
section 7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP SearchRequest message [RFC2251] section 4.5.1 as follows: 

baseObject: defaultNamingContext that is obtained in step 1 

scope: baseObject 

filter: ObjectClass=* 

attributes: objectGuid, objectSid 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325


 

115 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

derefAliases: neverDerefAliases 

typesOnly: false 

TaskOutputResultMessages: LDAPResultMessages 

Upon success, the client MUST set the following task ADM elements: 

TaskLocalDomainGUID = objectGuid 

TaskLocalDomainSID = objectSid 

3. The client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] 
section 7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP SearchRequest message [RFC2251] section 4.5.1 as follows: 

baseObject: concatenation of "CN=Partitions," with the value of 

configurationNamingContext obtained in step 1 

scope: wholeSubtree 

filter: string"(&(objectClass=crossref)(ncName=defaultNamingContext)", where 

defaultNamingContext represents the value obtained in step 1 

attributes: nETBIOSName 

derefAliases: neverDerefAliases 

typesOnly: false 

TaskOutputResultMessages: LDAPResultMessages 

Upon success, the client MUST set the following task ADM element: 

TaskLocalDomainName.NetBios = nETBIOSName 

8.4.5.4   Create Client Computer Account on the Domain Controller 

The client MUST create an account in the directory to represent itself, or modify an existing account 
as required. This is achieved as follows: 

1. The client MUST bind to the DRS RPC endpoint ([MS-DRSR] section 2.1) on 
TaskLocalDomainController. 

2. The client MUST invoke IDL_DRSCrackNames Method ([MS-DRSR] section 4.1.4) with the 
following parameter values: 

rpNames = TaskLocalDomainName.NetBIOS "\" TaskLocalClientName 

If the call succeeds, TaskInputAccountOU was specified, and the account exists under 

TaskInputAccountOU, the client MUST set TaskLocalClientAccountDN as follows: 

TaskLocalClientAccountDN = TaskInputAccountOU "," TaskLocalClientName 

Execution then continues at step 6. 

%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-DRSR%5d.pdf
%5bMS-DRSR%5d.pdf


 

116 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

If the call succeeds, TaskInputAccountOU was specified, and the account does not exist, the 
client MUST continue execution at step 3. 

If the call succeeds, TaskInputAccountOU was specified, and the account exists under a 
different OU than TaskInputAccountOU, the client MUST fail the task. 

If the call succeeds, TaskInputAccountOU was specified, and the account does not exist, the 
client MUST set TaskLocalClientAccountDN as follows: 

TaskLocalClientAccountDN = TaskInputAccountOU "," TaskLocalClientName 

Execution then continues at step 6. 

If the call succeeds, TaskInputAccountOU was not specified, and the account does not exist, 
the client MUST continue execution at step 4. 

If the call fails, the client MUST fail the task. 

3. The client MUST validate that the requested OU (TaskInputAccountOU) is valid for use. The 
client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] section 
7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP CompareRequest message [RFC2251] section 4.10, as 

follows: 

entry: TaskInputAccountOU 

ava: OrganizationalUnit 

TaskOutputResultMessages: LDAPResultMessages 

If the call returns LDAP_COMPARE_TRUE, the requested OU is validated and the client MUST set 

TaskLocalClientAccountDN as follows: 

TaskLocalClientAccountDN = TaskInputAccountOU "," TaskLocalClientName 

Execution then continues at step 6. 

If the call fails or returns LDAP_COMPARE_FALSE, the task MUST fail. 

4. The client MUST retrieve the default OU for computer accounts from the DC to determine where 
to create the new computer account.  

The client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] 

section 7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP SearchRequest message [RFC2251] section 4.5.1 as follows: 

baseObject: TaskLocalDomainController 

scope: baseObject 

filter: ObjectClass=computer 

attributes: preferredOU 

%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325


 

117 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

derefAliases: neverDerefAliases 

typesOnly: false 

TaskOutputResultMessages: LDAPResultMessages 

If the search fails, the task MUST fail. If the search succeeds, the client MUST parse the returned 
value for the DN of the computer container DN (see [MS-ADTS] section 6.1.1.4 for details) and 
get the DN of the preferredOU. 

5. The client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] 
section 7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP SearchRequest message [RFC2251] section 4.5.1 as follows: 

baseObject: The DN of preferredOU obtained in step 4. 

scope: baseObject 

filter: ObjectClass=* 

attributes: wellKnownObjects 

derefAliases: neverDerefAliases 

typesOnly: false 

TaskOutputResultMessages: LDAPResultMessages 

If the search fails, the task MUST fail. If the search succeeds, the client MUST parse the returned 

value for the DN of the computer container DN (see [MS-ADTS] section 6.1.1.4 for details) and 
set TaskLocalClientAccountDN as follows: 

TaskLocalClientAccountDN = WellknownComputerAccountOU "," TaskLocalClientName 

6. The client MUST generate a password through cryptographically sound random number 
generators. The password is treated as a Unicode string, even if the actual values generated do 
not map to actual glyphs in the Unicode character set. <16> 

The TaskLocalPassword ADM element is updated with the newly generated password. 

7. The client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] 
section 7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP SearchRequest message [RFC2251] section 4.5.1 as follows: 

baseObject: TaskLocalClientAccountDN transformed to a directory string 

scope: baseObject 

filter: ObjectClass=* 

attributes: objectClass, dnsHostName, sAMAccountName, servicePrincipalName, 

userAccountControl 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325


 

118 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

derefAliases: neverDerefAliases 

typesOnly: false 

TaskOutputResultMessages: LDAPResultMessages 

8. If step 7 fails with an error indicating that the account does not exist, the client invokes the 
"Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] section 7.6.1.6) with the 
following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP AddRequest message [RFC2251] section 4.7 as follows: 

entry: TaskLocalClientAccountDN transformed to a directory string 

attributes: AttributeList formed by following attributes and values: 

Attribute Value 

objectClass Set to computer ([MS-ADSC] section 2.21) 

dNSHostName "ComputerName.NetBIOS"."TaskLocalDomainName.FQDN" 

sAMAccountName TaskLocalClientName 

servicePrincipalNam

e 

host/"ComputerName.NetBIOS" 

host/"ComputerName.NetBIOS"."TaskLocalDomainName.FQDN" 

RestrictedKrbHost/"ComputerName.NetBIOS" 

RestrictedKrbHost/"ComputerName.NetBIOS"."TaskLocalDomainName.FQ

DN" 

userAccountControl 0x1000 

unicodePwd TaskLocalPassword transformed to a directory string 

TaskOutputResultMessages: LDAPResultMessages 

If the call fails, the client MUST fail the task. Otherwise execution continues at section 8.4.5.5. 

9. If step 7 succeeds, the client MUST compare the returned value of each attribute against the 
desired values listed in the table in step 8. 

The client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] 
section 7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP CompareRequest message [RFC2251] section 4.10 as 

follows: 

entry: Set to Attribute from the table in step 8. 

ava: Set to corresponding Value from the table in step 8. 

TaskOutputResultMessages: LDAPResultMessages 

%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADSC%5d.pdf
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325


 

119 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

If the compare request returns LDAP_COMPARE_TRUE for all the attributes, the client invokes the 
"Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] section 7.6.1.6) with the 

following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP ModifyRequest message [RFC2251] section 4.6, as follows: 

object: TaskLocalClientAccountDN transformed to a directory string 

operation: replace 

modification type: unicodePwd 

modification vals: TaskLocalPassword 

TaskOutputResultMessages: LDAPResultMessages, which indicates whether a modification is 

successful. 

If the compare request returns LDAP_COMPARE_FALSE for any of the attribute and value pairs 
specified in the table shown in step 8, the client MUST perform an LDAP modify operation against 
the directory on TaskLocalDomainController to set the attribute and values as specified in the 

table in step 8. The client invokes the "Performing an LDAP Operation on an ADConnection" task 
([MS-ADTS] section 7.6.1.6) with the following parameters: 

TaskInputADConnection: TaskLocalLDAPConnection 

TaskInputRequestMessage: LDAP ModifyRequest message [RFC2251] section 4.6, as follows: 

object: TaskLocalClientAccountDN transformed to a directory string 

operation: replace 

modification type: The attribute used in the LDAP compare request that returned 

LDAP_COMPARE_FALSE. 

modification vals: The corresponding value specified in the step 8 table for that attribute. 

TaskOutputResultMessages: LDAPResultMessages 

If the call fails, the client MUST fail the task. 

8.4.5.5   Enumerate Domain Trusts 

The client MUST enumerate domain trusts using the steps specified in section 6.4.5.5. 

If this step fails, the task MUST execute the rollback steps in section 8.4.5.7, and the task MUST fail. 

8.4.5.6   Update Local State 

The client MUST update its local state using the steps specified in section 6.4.5.6. 

If this step fails, the task MUST execute the rollback steps in section 8.4.5.7, and the task MUST fail. 
If this step succeeds, task execution continues at section 8.4.5.8. 

8.4.5.7   Rollback Changes on Domain Controller 

This step is only executed upon failure of a previous step. 

%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325


 

120 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

If the task actually created the computer account on the DC (this is true if the LDAP add operation 
succeeded in step 8 of section 8.4.5.4), the task MUST attempt to delete that computer account on 

the DC using the steps that follow. 

The following definitions are used in the specification of message processing that follows in this 

section. 

CleanupLDAPConnection: an ADCONNECTION_HANDLE, described in [MS-ADTS] section 7.3, 

to a domain controller. 

1. The client invokes the "Initializing an ADConnection" task ([MS-ADTS] section 7.6.1.1) with the 
following parameters: 

TaskInputTargetName: TaskLocalDomainController 

TaskInputPortNumber: 389 

Upon success, the result is stored in CleanupLDAPConnection. 

2. The client invokes the "Setting an LDAP option on an ADConnection" task ([MS-ADTS] section 
7.6.1.2) with the following parameters: 

TaskInputADConnection: CleanupLDAPConnection 

TaskInputOptionName: LDAP_OPT_AUTH_INFO 

TaskInputOptionValue: 

bindMethod: SASL, using the GSS-SPNEGO protocol ([MS-ADTS] section 5.1.1.1) 

name: TaskInputDomainAdminAccount 

Password: TaskInputDomainAdminAccountPassword 

3. The client invokes the "Setting an LDAP option on an ADConnection" task ([MS-ADTS] section 

7.6.1.2) with the following parameters: 

TaskInputADConnection: CleanupLDAPConnection 

TaskInputOptionName: LDAP_OPT_AREC_EXCLUSIVE 

TaskInputOptionValue: TRUE 

4. The client invokes the "Setting an LDAP option on an ADConnection" task ([MS-ADTS] section 
7.6.1.2) with the following parameters: 

TaskInputADConnection: CleanupLDAPConnection 

TaskInputOptionName: LDAP_OPT_ENCRYPT 

TaskInputOptionValue: TRUE 

5. The client invokes the "Setting an LDAP option on an ADConnection" task ([MS-ADTS] section 
7.6.1.2) with the following parameters: 

TaskInputADConnection: CleanupLDAPConnection 

TaskInputOptionName: LDAP_OPT_REFERRALS 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

121 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

TaskInputOptionValue: FALSE 

6. The client invokes the "Establishing an ADConnection" task ([MS-ADTS] section 7.6.1.3) with the 
TaskInputADConnection parameter set to CleanupLDAPConnection. 

7. The client invokes the "Performing an LDAP Bind on an ADConnection" task ([MS-ADTS] section 
7.6.1.4) with the TaskInputADConnection parameter set to CleanupLDAPConnection. 

8. The client invokes the "Performing an LDAP Operation on an ADConnection" task ([MS-ADTS] 
section 7.6.1.6) with the following parameters: 

TaskInputADConnection: CleanupLDAPConnection 

TaskInputRequestMessage: LDAP modifyRequest message [RFC2251] section 4.6 as follows: 

Object: TaskLocalClientAccountDN 

The modification sequence has one list entry, set as follows: 

First list entry 

operation: delete 

modification: 

type: msDS-AdditionalDnsHostName 

vals: "ComputerName.NetBIOS"."TaskLocalDomainName.FQDN" 

controls: Sequence of one Control structure, as follows: 

controlType: LDAP_SERVER_PERMISSIVE_MODIFY_OID ([MS-ADTS] section 

3.1.1.3.4.1.8) 

criticality: FALSE 

TaskOutputResultMessages: LDAPResultMessages 

This task will return TaskReturnStatus, the LDAP resultCode ([RFC2251] section 4.1.10) returned 
from the directory server in response to the request, or an error indicating that the directory 
server could not be contacted or that a timeout has occurred. 

9. The client MUST invoke task "Performing an LDAP Unbind on an ADConnection" ([MS-ADTS] 
section 7.6.1.5) with the TaskInputADConnection parameter set to CleanupLDAPConnection. 

8.4.5.8   Close Connections 

The client MUST invoke the task "Performing an LDAP Unbind on an ADConnection", as specified in 
[MS-ADTS] section 7.6.1.5, with the TaskInputADConnection parameter set to 

TaskLocalLDAPConnection. 

8.4.5.9   Reinitialize Local Protocols 

The client MUST reinitialize local protocols using the steps specified in section 6.4.5.8. 

%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90325
%5bMS-ADTS%5d.pdf
%5bMS-ADTS%5d.pdf


 

122 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

8.5   Task Security 

Please refer to the Security section of this specification and the Security sections of the referenced 
protocol Technical Documents (TDs). 

Upon successful completion of this task by a client already joined to a domain, the client's machine 
account in the old domain will be left as it is. The administrator of the old domain should consider 
disabling or deleting the old machine account as a security best practice. 



 

123 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

9   Unjoining a Domain Member 

This section describes the process of unjoining a client computer from a domain. 

9.1   Task Overview 

9.1.1   Task Purpose 

The purpose of this task is to unjoin a client computer from a domain. 

9.1.2   Task Applicability 

This task is applicable to a client computer that is part of a domain and needs to unjoin from the 
domain. 

9.1.3   Task Use Cases 

9.1.3.1   Stakeholders and Interests Summary 

Client Administrator: The Client Administrator is the administrator of the client computer, 
interested in unjoining the client computer from the domain. 

Client Computer: The client computer that is being unjoined from the domain. 

Domain Administrator: The Domain Administrator is the administrator of the domain. The Domain 
Administrator supplies the credentials to this task for disabling the machine account on the domain 
controller (DC). 

Domain Controller: The domain controller (DC) is a computer providing domain services to domain 

clients. The Domain Administrator disables the machine account on the domain controller during 
task processing. 

9.1.3.2   Supporting Actors and Task Interests Summary 

This task depends on the following supporting actors for the specified interests: 

[MS-NRPC] local protocol, for locating a local a domain controller. 

SMB protocol ([MS-SMB2], [MS-SMB], or [MS-CIFS]), for opening/closing SMB sessions to a DC. 

The Task does not require that any specific SMB protocol be used. 

[MS-SAMR] protocol, for disabling the client computer account on a DC. 

There are no other systems or Tasks in which this Task is an actor. 

%5bMS-NRPC%5d.pdf
%5bMS-SMB2%5d.pdf
%5bMS-SMB%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-SAMR%5d.pdf


 

124 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

9.1.3.3   Use Case Diagram 

 

Figure 41: Use case diagram; unjoining a domain member 

9.1.3.4   Unjoining a Domain Member - Client Computer 

Goal: Unjoin a client computer from a domain. 

Context of use: A client administrator wants to unjoin the client computer from the domain it is 
currently part of, usually to repurpose or decommission the computer. 

Primary Actor: The client administrator is the primary actor who initiates unjoining the client 
computer from a domain. The client administrator invokes commands/applications on the client that 
initiate the current task. 

Direct Actor: The client computer unjoining the domain. 

Primary Actor: The client computer unjoining from the domain. 

Supporting Actors: All supporting actors are specified in section 9.1.3.2. 

Stakeholders and Interests: The stakeholders and interests are specified in section 9.1.3.1. 

Preconditions: The client computer MUST have previously completed the domain join task 
successfully (as described in section 6, 7 or 8) and MUST still be part of the domain. 

Minimal Guarantees: If the main success scenario does not successfully finish, the local state of 
the client computer remains the same as before the unjoin task initialized. 

Success Guarantees: 

The state of the computer object on the domain controller (DC) is updated to reflect that the 

domain client has unjoined from the domain. 

The machine local state of the client computer is updated to reflect that the client has unjoined 

from the domain. 

Triggers: The client administrator initiates this task. 



 

125 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Main Success Scenario: 

1. The client administrator locates a domain controller (DC). 

2. The client computer establishes a SMB/CIFS connection to the domain controller (DC) obtained 
through the preceding step with the credential of the Domain Administrator (see section 9.4.5.2). 

3. The client computer disables the machine account on the domain controller (DC) using the SAMR 
protocol ([MS-SAMR] section 9.4.5.3). 

4. The client computer updates its local state (see section 9.4.5.4). 

5. The client computer closes connections (see section 9.4.5.5). 

6. The client computer reinitializes local protocols (see section 9.4.5.6). 

Extensions: None. 

9.2   Task Context 

This section describes the relationship between this Task and its environment. 

9.2.1   Task Environment 

This task assumes that the client is operating in a domain environment. If not, the client cannot be 
unjoined from the domain. 

9.2.2   Task Relationships 

This task builds on the Common Task Information (see section 4) which is shared with all of the 
tasks in this document. 

9.2.2.1   Black Box Relationship Diagrams 

The following diagram illustrates the system as the client computer unjoins the domain and interacts 

with the domain controller (DC). 

%5bMS-SAMR%5d.pdf


 

126 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 42: Black box diagram: unjoining a domain member 

9.2.2.2   Task Dependencies 

Success of this Task also relies on domain controllers being present. The client relies on the local 
MS-NRPC server to locate a domain controller for the domain. The client relies on the SMB/CIFS 
protocol to establish a connection to the Domain Controller, and then uses the SAMR protocol to 

update the directory to reflect the departure of the client from the domain. 

9.2.2.3   Task Influences 

None. 

9.2.3   Task Assumptions and Preconditions 

This task assumes that the client computer is joined to the domain. 

9.2.4   Task Versioning and Capability Negotiation 

None. 

9.3   Task Architecture 

9.3.1   Task Architectural Constraints 

This task has the following architectural constraints: 

Only one instance of this task MUST run on the client computer at any given time. The task does 

not support multiple, parallel executions. 



 

127 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

This task MUST NOT run a second time following a successful completion as the previous 

successful completion of the task makes the client computer be no longer domain joined. This 

violates the precondition for the task to run. 

This task MAY be run a second time following an unsuccessful run, as an unsuccessful run makes 

no changes to the client state. 

This task MUST NOT make assumptions about distributed state, such as the machine account on 

the domain controller. Notably, if this task is invoked with TaskInputDisableMachineAccount 
(see section 9.3.4) set to TRUE, this task will succeed only if the machine account exists and the 
processing steps specified in sections 9.4.5.1, 9.4.5.2, and 9.4.5.3 succeed. If the task fails due 

to a failure in one of these steps, the task MAY be run again with 
TaskInputDisableMachineAccount set to FALSE; the task will only modify local client 
computer state in that case.  

9.3.2   Task Abstract Data Model 

This section describes state established, used, and maintained by the processing rules of this Task. 

State may be volatile or persisted. State may pertain to one, some, or all instances of the Task. The 

Task's state consists of the values of the named data elements (also called state variables) 
presented in this section. The overall organization of the data elements, with their names, is the 
Abstract Data Model. It is intended to facilitate the reader's conceptual understanding of the 
specification. While a Task's processing rules may depend upon associations established by the 
structure of its Abstract Data Model, such association can be achieved in other ways. 
Implementations may depart from this model so long as their external behavior remains consistent 
with that described in this document. 

The following are the in-memory values used by the Task. These values are not persisted. 

Name Type Description 

TaskLocalDomainController string 

(Unicode) 

Contains the name of the domain controller (DC) the 

task has determined to use. 

TaskLocalSMBSession SMB/CIFS 

session 

Contains the returned SMB state for the SMB/CIFS 

session established to the domain controller (DC). 

The following client data model variables (section 4.3.1.1) are modified by the task as the final step 
before it completes a successful run: 

DomainName.NetBIOS and DomainName.FQDN 

DomainSid 

DomainGUID 

SiteName 

Password 

9.3.3   Task Abstract Parameters 

This section describes data passed to an instance of this task at the time it is invoked or triggered. 
The parameters consist of the values of the named data elements presented in this section. The 

organization of a data element, with its names, is an Abstract Parameter. It is intended to facilitate 
the reader's conceptual understanding of the specification. While a task's processing rules might 



 

128 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

depend upon associations established by the structure of its Abstract Parameters, such association 
can be achieved in other ways. Implementations can depart from this abstraction so long as their 

external behavior remains consistent with that described in this document. 

The abstract parameters for this task are as follows: 

Name Type Description Optional 

TaskInputDomainAdministratorName string 

(Unicode) 

The name of a Domain 

Administrator that is used to 

disable the machine account 

on the domain controller (DC). 

No 

TaskInputDomainAdministratorPassword string 

(Unicode) 

The password of the Domain 

Administrator. 

No 

TaskInputDisableMachineAccount boolean Whether to disable the 

existing machine account or 

not. 

No 

9.3.4   Task Abstract Results 

This section describes data returned by an instance of this task to its caller. The results consist of 
the values of the named data elements presented in this section. The organization of a data 
element, with its names, is an Abstract Result. It is intended to facilitate the reader's conceptual 
understanding of the specification. While a task's processing rules might depend upon associations 
established by the structure of its Abstract Results, such association can be achieved in other ways. 
Implementations can depart from this abstraction so long as their external behavior remains 

consistent with that described in this document. 

The task returns the following results to the caller:  

Name Type Description 

TaskReturnStatus integer This task MUST return 0x00000000 on success. Error statuses 

generated by a failure during task processing are in the Win32 error 

space (a long data type), as specified in [MS-ERREF] section 2.2. 

Upon a successful task completion, this task also performs the following: 

1. Updates the following client variables (section 4.3.1.1): 

DomainName.NetBIOS 

DomainName.FQDN 

DomainGuid 

DomainSid 

ClientName 

Password 

TrustedDomains 

%5bMS-ERREF%5d.pdf


 

129 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

The updated values are persisted, as specified in section 4.3.1.1, and are available for other 
protocols on the client to use. 

2. Stops the NetLogon Remote Protocol and configures it not to run automatically at every system 
start up. 

3. Notifies the Certificate Autoenrollment system that the machine is unjoining from the domain. 

4. Removes the Domain Administrators from the local Administrators group (see [MS-SAMR] section 
3.1.7.1). 

5. Notifies the local MS-SNTP protocol that the machine is unjoining from the domain (failures in 
this step are ignored). 

6. Optionally (if TaskInputDisableMachineAccount was specified as TRUE), disables the client 
computer account in the domain. 

Upon a failed task completion, this task will attempt to revert any local state changes made (see 

step 2 in the local state rollback steps, section 9.4.5.4). If the task is unable to disable the computer 
account upon failure, domain administrator intervention outside the scope of the task may be 
necessary to disable the account. If the task is unable to revert local state changes, administrator 
intervention outside the scope of the task may be necessary. 

9.3.5   White-Box Relationships 

 

Figure 43: White-box diagram: unjoining a domain member 

%5bMS-SAMR%5d.pdf


 

130 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

9.3.6   Task Events 

9.3.6.1   Task Timers 

None. 

9.3.6.2   Task Non-Timer Events 

None. 

9.3.7   Task Architecture and Communication 

To unjoin from a domain, a Client Administrator locates a domain controller (DC) using the 

DsrGetDcNameEx2 method of the local MS-NRPC server and then performs actions against the 
domain controller (DC). The Client Administrator also updates the machine local state and triggers 
higher layer events, as shown in the diagram in section 9.3.5.  

The following explanations refer to the diagram in section 9.3.5: 

Unjoining a Domain Member Task: This box represents the task, including the task ADM and 
processing. This box interacts with the domain controller for achieving the goals of this task. This 
box also configures client ADM and client local states. 

Client ADM, Group Membership: These boxes are updated by the Unjoining a Domain Member 
Task box. 

Time Service, Cert Auto Enrollment Service, and Netlogon Service: These boxes are signaled 
by the Unjoining a Domain Task box. 

SMB, SAM RPC: These boxes represent the server-side implementations of the protocols used by 
this task, namely SMB and SAMR. 

9.3.8   Task Processing Rules 

Task: Unjoining a client computer from a domain. 

Abstract Parameters: As specified in section 9.3.3. 

Preconditions: The client computer must be joined to the domain. 

Main Success Scenario: 

1. If TaskInputDisableMachineAccount is TRUE: 

Locate a domain controller (DC) to be used during task processing (see section 9.4.5.1). 

Establish an SMB/CIFS session to the domain controller (DC) (see section 9.4.5.2). 

2. Disable the computer account on the domain controller (DC) (see section 9.4.5.3). 

3. Update the local state (see section 9.4.5.4). 

4. Close connections (see section 9.4.5.5). 

Extensions: 



 

131 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

1. If the client fails to locate a domain controller, or fails to establish an SMB/CIFS session to the 
DC, the client MUST terminate the task with an error. 

2. If the client fails to disable the computer account, the client MUST terminate the task with an 
error. 

3. If the client fails to update its local state, the client MUST terminate the task with an error. 

9.3.9   Task Failure Scenarios 

There are three primary failure scenarios: 

Locating a Domain Controller fails: If TaskInputDisableMachineAccount is set to TRUE, 

the domain controller (DC) needs to be contacted to disable the computer object. If a DC cannot 

be located, this will cause this task to fail. 

Authentication Fails: If TaskInputDisableMachineAccount is set to TRUE, the user needs to 

be authenticated to disable the computer object. In this situation, the client provides incorrect 

credentials and is not authenticated, causing the task to fail.  

Directory Update Fails: If TaskInputDisableMachineAccount is set to TRUE, and updating 

the UserAccountControl attribute on the machine account in Directory fails, the task will fail.  

Local State Update Fails: If the client is unable to update its local state, the task will fail. 

9.4   Task Details 

This section contains the details that complete the descriptions in earlier sections of the document. 
These are needed to understand and implement this Task. 

9.4.1   Task Precondition Details 

Not applicable. 

9.4.2   Task Initialization of External Entities 

None. 

9.4.3   Task Event Details 

9.4.3.1   Task Timer Details 

None. 

9.4.3.2   Task Non-Timer Event Details 

None. 

9.4.4   Task Architectural Details 

If the TaskInputDisableMachineAccount (section 9.3.3) parameter is passed to unjoin task as 
TRUE, the Client Administrator will locate a domain controller (DC), and interact with the DC to 
update the machine object in Directory. The general flow is as follows: The Client Administrator 
locates a DC using the DsrGetDcNameEx2 method of the local MS-NRPC server. When the DC is 
determined, the Domain Administrator binds to the DC through the SMB/CIFS protocol  using the 



 

132 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

credential provided to the task (TaskInputDomainAdministratorName, 
TaskInputDomainAdministratorPassword, see section 9.3.3). Once assured of valid credentials, 

the Domain Administrator updates information on the computer object in the domain using SAMR 
[MS-SAMR]. 

If the TaskInputDisableMachineAccount (section 9.3.3) parameter is passed to the unjoin task 
as FALSE, the task will proceed without locating a DC or making any modifications other than to 
local state (section 9.4.5.4). 

The following figure shows the network traffic for a typical main success scenario when 
TaskInputDisableMachineAccount has been specified as TRUE. Note that the initial exchange 
(Locate a DC) is representative only of the traffic between the client and the selected domain 
controller; additional exchanges that may occur to other domain controllers are not represented. 

See section 5.4.4 for additional details. 

 

Figure 44: Unjoining client from domain architectural details 

The initial state of the client ADM remains that which was persisted as a result of a previously 
successful domain join task, in addition to which the following are set to NULL: DomainName, 
DomainSid, SiteName, and Password. 

9.4.5   Task Processing Rule Details 

This section describes details for the steps identified in section 9.3.8. Unless otherwise specified, the 
processing falls through from one section to the next. 

%5bMS-SAMR%5d.pdf


 

133 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

 

Figure 45: Unjoining client from domain flowchart 

9.4.5.1   Locate a Domain Controller 

If the TaskInputDisableMachineAccount (section 9.3.3) parameter is FALSE, task execution 
MUST continue at section 9.4.5.4. 

If the TaskInputDisableMachineAccount (section 9.3.3) parameter is TRUE, the client MUST 
invoke the DsrGetDcNameEx2 method on the local MS-NRPC server, specifying the following 

parameters: 

ComputerName = ComputerName.NetBIOS (section 4.3.1.1) 

AccountName = NULL 



 

134 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

AllowableAccountControlBits = 0 

DomainName = DomainName.FQDN (section 4.3.1.1) 

DomainGuid = NULL 

SiteName = NULL 

Flags = (DS_WRITABLE_FLAG | DS_DS_FLAG | DS_LDAP_FLAG | DS_KDC_FLAG) ([MS-ADTS] 

section 6.3.1.2). 

Upon success, the following elements in the task ADM are set as follows: 

TaskLocalDomainController = DomainControllerInfo.DomainControllerName 

If the DsrGetDcNameEx2 call fails, the current task also fails. 

9.4.5.2   Establish SMB Connection 

The client MUST establish an authenticated SMB/CIFS connection to the IPC$ share on the 
TaskLocalDomainController domain controller, by invoking [MS-CIFS] section 3.4.4.7 specifying 
the following parameters: 

ServerName = TaskLocalDomainController.FQDN 

UserCredentials = TaskInputDomainAdminAccount\TaskInputDomainAdminPassword 

Upon success, the client MUST store the results in TaskLocalSMBSession. 

9.4.5.3   Disable Computer Account 

 

The following sequence of operation is performed to disable the computer object in the directory: 

1. The client MUST bind to the named pipe endpoint \PIPE\samr, as presented in [MS-SAMR] 

section 2.1, on the TaskLocalDomainController domain controller. 

2. The client MUST connect to the SAM RPC server on the domain controller using one of the 
SamrConnect variants. See [MS-SAMR] section 1.7.2 for information on invoking the 
SamrConnect variants in order to determine version and method supported by the server. See 

[MS-SAMR] section 3.1.5.1 for using the Open pattern in the SAM interface.  The SamrConnect 
method MUST be invoked specifying the following parameters: 

ServerName = TaskLocalDomainController.FQDN 

DesiredAccess = GENERIC_ALL 

3. The client MUST call SamrOpenDomain ([MS-SAMR] section 3.1.5.1.5) specifying the following 
parameters: 

DesiredAccess = GENERIC_ALL 

DomainSid = DomainSID (section 4.3.1.1) 

4. The client MUST call the SamrLookupNamesInDomain method ([MS-SAMR] section 
3.1.5.11.2) to determine the RID for this account, specifying the following parameters: 

%5bMS-ADTS%5d.pdf
%5bMS-CIFS%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf


 

135 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

DomainHandle = DomainHandle returned in the previous call 

Count = 1 

Names = ClientName 

Use = SidTypeUser 

Upon success, RelativeIDs parameter points to the RID of the existing Client account. 

5. The client MUST open the account to modify by calling the SamrOpenUser method ([MS-SAMR] 
section 3.1.5.1.9), specifying the following parameters: 

DesiredAccess = GENERIC_ALL 

AliasId = RelativeIDs returned in the previous call 

6. The client MUST query the current value of UserAccountControl on the account using the 
SamrQueryInformationUser method ([MS-SAMR] section 3.1.5.5.6), specifying the following 

parameters: 

UserHandle = UserHandle returned in the previous call 

UserInformationClass = UserControlInformation (see [MS-SAMR] section 2.2.7.28) 

7. The Client MUST call SamrSetInformationUser method ([MS-SAMR] section 3.1.5.6.5) to 
disable the computer account in the directory, specifying the following parameters: 

UserInformationClass = UserControlInformation (see [MS-SAMR] section 2.2.7.28) 

Buffer = UserInformationClass.UserAccountControl | USER_ACCOUNT_DISABLED 

Upon success, the client has successfully disabled the computer account in the directory. 

9.4.5.4   Update Local State 

1.   Update local state. 

1. The client must uninitialize the MS-NRPC protocol [MS-NRPC] and configure it to not 
run automatically at every boot.  

If this step fails, the task must begin executing step 2 as shown. 

2. The client must invoke the Domain Unjoin Processing higher layer triggered event in 

[MS-SNTP] section 3.1.4.2, which will set the Type abstract data model element to the 
value "NTP". 

If this step fails, the task must begin executing step 2 as shown. 

3. The Client must invoke the "Certificate Autoenrollment Task" task ([MS-CAESO] 
section 4) specifying the IsUnjoiningDomain input parameter ([MS-CAESO] section 

4.3.3) to be TRUE. 

If this step fails, the task must begin executing step 2 as shown.  

4. The client MUST invoke the Domain unjoin processing event in SAMR ([MS-SAMR] 
section 3.1.7.2), specifying the following parameter: 

%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-NRPC%5d.pdf
%5bMS-SNTP%5d.pdf
%5bMS-SAMR%5d.pdf


 

136 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

DomainSID = DomainSID 

If this step fails, the task must begin executing step 2 as shown. 

5. The client MUST update the following ADM values (section 4.3.1.1) to the values 
specified as follows. These values MUST be modified in a single atomic update. 

ClientName = NULL 

DomainName.FQDN = NULL 

DomainName.NetBIOS = "Workgroup" 

DomainSid = NULL 

ForestNameFQDN = NULL 

DomainGuid = NULL 

SiteName = NULL 

2.   Rollback in case of error. 

The following steps are executed only upon a failure of one of the substeps in section 1 as shown, 
in order to reverse those state changes that were previously made during step 1 processing. 

6. The client MUST restore the client ADM variables updated in step 1d as shown to their 
original values. 

7. The client MUST initialize the MS-NRPC protocol, and configure it to run at every 
system restart. 

8. The client must invoke the Domain Join Processing higher layer triggered event in [MS-
SNTP] section 3.1.4.1, which will set the Type abstract data model element to the 

value "NT5DS". 
9. The client must invoke the "Certificate Autoenrollment Task" task ([MS-CAESO] section 

4) specifying the IsUnjoiningDomain input parameter ([MS-CAESO] section 4.3.3) to 

be FALSE. 
10. The client MUST invoke the domain join processing event in SAMR ([MS-SAMR] section 

3.1.7.1) with the parameters set as follows: 

DomainSID = DomainSID 

9.4.5.5   Close Connections 

The client MUST close any SAMR handles opened earlier as specified in section 9.4.5.3 by calling the 
SamrCloseHandle method ([MS-SAMR] section 3.1.5.13.1) and passing the handle as the 
parameter. The client MUST close all open handles irrespective of previous errors in this call 
sequence. 

If an SMB/CIFS session was previously established (see section 9.4.5.2), the client MUST disconnect 

as described in [MS-CIFS] section 3.4.4.8, specifying TaskLocalSMBSession. 

9.4.5.6   Reinitialize Local Protocols 

The client MUST reinitialize local protocols using the steps specified in section 6.4.5.8. 

%5bMS-SNTP%5d.pdf
%5bMS-SNTP%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-SAMR%5d.pdf
%5bMS-CIFS%5d.pdf


 

137 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

9.5   Task Security 

If this task is invoked with TaskInputDisableMachineAccount set to FALSE, this MAY result in the 
client computer machine account being left in an undesirable state (not disabled); administrative 

action may be necessary to make the appropriate changes to the machine account outside the scope 
of the task. 

For more information, refer to the Security section of this specification and the Security sections of 
the referenced protocol Technical Documents (TDs). 



 

138 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

10   Security 

This section documents security issues common to all tasks that are not otherwise described in the 
Technical Documents (TDs) for the protocols used in the task. It does not duplicate what is already 
in the protocol TDs unless there is some unique aspect that applies to the system as a whole. 

Interacting with the domain controller brings with it certain constraints that affect the security of the 
distributed system and domain as a whole. Since the domain controller serves as the root of trust 
for the entire domain, and potentially additional domains based on trust relationships, great 
attention has to be paid to the correctness of the implementation of all the member protocols. A 

failure in the implementation that allows an exploit could compromise the entire domain. 

When beginning any interaction with the domain controller, the domain client is in a tenuous state. 
It has to establish a connection and authenticate in a way that prevents attackers from manipulating 
the messages exchanged between the client and the domain controller. For all protocols involved in 
these situations consider the security conditions described in the following section. 

10.1   Untrusted Data 

Some protocols used to start the domain interactions are by necessity untrusted--for example, 
responses to DNS queries are typically not secure. It is important to limit the use of these untrusted 
data to cases where malicious tampering can be mitigated. For example, a malicious DNS reply 
could come back to a client, sending it to a malicious, fake domain controller. This is mitigated by 
the client requiring strong, mutual authentication with the domain controller. 

The influence of untrusted data can be more subtle than an attack on name resolution. When 

exchanging data (for example, a query from the directory) and the communication channel is not 
encrypted, perform an integrity check. An attacker might modify data in flight and cause unexpected 
behavior. Since it is rarely possible to determine only what is security-relevant data, treat all data as 
vital. A server might be making an authorization decision based on an LDAP query from the 
directory; if an attacker was able to change that, the decision would be subverted. 

10.2   Authentication 

It is as important to authenticate a client to a server as it is to authenticate the server to the client. 
Legacy authentication schemes, and even some more modern ones, are focused on one party or the 
other. While it is clearly in the server's interest not to disclose inappropriate information to the 
wrong client, it is equally as risky for a client to connect to a malicious server. 

Mutual authentication is possible only when the client can express what server it is trying to contact. 
Domain clients can only be assured of mutual authentication when they use well-formed service 
principal names to specify the server to which they are connecting. 



 

139 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

11   Appendix A: Product Behavior 

The information in this specification is applicable to the following Microsoft products or supplemental 
software. References to product versions include released service packs: 

Windows NT 3.1 operating system 

Windows NT 3.5 operating system 

Windows NT 3.51 operating system 

Windows NT 4.0 operating system 

Windows 2000 operating system 

Windows 2000 Server operating system 

Windows XP operating system 

Windows Server 2003 operating system 

Windows Server 2003 R2 operating system 

Windows Vista operating system 

Windows Server 2008 operating system 

Windows 7 operating system 

Windows Server 2008 R2 operating system 

Windows 8 operating system 

Windows Server 2012 operating system 

Windows 8.1 operating system 

Windows Server 2012 R2 operating system 

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number 
appears with the product version, behavior changed in that service pack or QFE. The new behavior 
also applies to subsequent service packs of the product unless otherwise specified. If a product 
edition appears with the product version, behavior is different in that product edition. 

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed 
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD 

or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product 
does not follow the prescription. 

<1> Section 3.1.4.4: Windows products from Windows NT 4.0 to Windows Server 2008 all add the 
well-known group "Domain Admins" to the administrators group on the domain client. However, this 

is specific to the Windows implementation and not a requirement for domain membership in general. 

<2> Section 3.3: For Windows, the issuing authority is the domain. 

<3> Section 4.3.1.1: All Windows DCs implement site awareness. 



 

140 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

<4> Section 5.4.4.1: Windows products from Windows 2000 through Windows Server 2012 R2 
include the machine account name of the domain client in the LDAP "Ping". Windows NT 4.0 does 

not support LDAP "Ping". 

<5> Section 5.4.4.1: Windows 2000 through Windows Server 2008 domain clients retry once per 

SRV entry returned. Windows NT 4.0 domain clients do not perform DNS-based domain controller 
location. 

<6> Section 5.4.4.1: Windows 2000 through Windows Server 2008 domain clients cache negative 
results for no more than five minutes. Windows NT 4.0 domain clients do not perform DNS-based 
domain controller location. 

<7> Section 5.4.5.3: Windows 2000, Windows XP, Windows Server 2003, Windows Server 2003 R2, 
and Windows Vista clients do not include the NETLOGON_NT_VERSION_WITH_CLOSEST_SITE bit in 

the LDAP/Mailslot ping message. 

<8> Section 5.4.5.3: Windows 2000 and later domain clients retry once per SRV entry returned. 
Windows NT 4.0 domain clients do not perform DNS-based domain controller location. 

<9> Section 5.4.5.6: If the FQDN(1) and the NetBIOS name are both available, the name format to 
be returned is chosen to match the format of the domain name that was specified in the abstract 
parameter TaskInputDomainName. If only one of the names is available, that name is used. 

<10> Section 6.4.5.5: All Windows client invocations follow these steps. The versions of which 
Windows server products that support these functions can be found in [MS-NRPC]. 

<11> Section 6.4.5.8: All versions of Windows accomplish re-initialization of the [MS-SNTP] 
protocol (on either domain join or unjoin) by rebooting the client machine. 

<12> Section 7.4.5.4: Windows products from Windows 2000 Server to Windows Server 2012 R2 all 
generate an ASCII string of randomly chosen characters. For more information, see [RFC4086]. 
Each character's ASCII code is between 32 and 122 inclusive. When randomly generating a 

password string, the server generates 120 characters. Each character is generated using the 
algorithm specified in [FIPS186-2] appendix 3.1. 

[FIPS186-2] appendix 3.1 describes a pseudo-random number generator (PRNG) that can use either 
DES or SHA-1. Windows uses a SHA-1-based PRNG to satisfy FIPS 140-2 level 2 cryptographic 
module certification requirements. 

In the PRNG description of appendix 3.1, G is constructed from SHA-1 with the first parameter as 
the initial value for the SHA-1 registers, and the second parameter is the data input to be hashed. 

Integer b is replaced with 160. 

XKEY is determined by a call to an RC4-based PRNG. 

The variable q is not used in the general purpose version of [FIPS186-2] (see appendix 6.9 General 
Purpose Random Number Generation). 

XSEEDj is also determined by a call to an RC4-based PRNG for every block output by the [FIPS186-

2] PRNG. 

The variable m is the number of blocks that can be output by the [FIPS186-2] PRNG before a non-
NULL value is passed to XSEEDj. The Windows implementation sets it to the shortest possible value, 
which is 1. 

%5bMS-NRPC%5d.pdf
%5bMS-SNTP%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90456
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870


 

141 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

<13> Section 7.4.5.5: Windows products from Windows 2000 Server through Windows Server 2012 
R2 update domain information in this way. Windows NT 3.1, Windows NT 3.5, Windows NT 3.51, 

and Windows NT 4.0 did not. 

<14> Section 7.4.5.5: Windows domain clients beginning with Windows 2000 use GSS-SPNEGO 

with Kerberos. Windows NT 4.0 domain clients do not perform this action at all. Other domain 
clients are known to use LDAP with GSSAPI (Kerberos) only, so that any domain controller 
implementation should be prepared for any valid form of authentication. 

<15> Section 7.4.5.5: Windows domain clients beginning with Windows 2000 set these values. 
Windows NT 4.0 domain clients set none of these. Windows 2000 domain clients do not specify the 
RestrictedKrbHost form of SPN. 

<16> Section 8.4.5.4: Windows products from Windows 2000 Server through Windows Server 2012 

R2 generate an ASCII string of randomly chosen characters. For more information, see [RFC4086]. 
Each character's ASCII code is between 32 and 122 inclusive. When randomly generating a 
password string, the server generates 120 characters. Each character is generated using the 
algorithm specified in [FIPS186-2] appendix 3.1. 

[FIPS186-2] appendix 3.1 describes a pseudo-random number generator (PRNG) that can use either 
DES or SHA-1. Windows uses a SHA-1-based PRNG to satisfy FIPS 140-2 level 2 cryptographic 

module certification requirements. 

In the PRNG description of appendix 3.1, G is constructed from SHA-1 with the first parameter as 
the initial value for the SHA-1 registers, and the second parameter is the data input to be hashed. 

Integer b is replaced with 160. 

XKEY is determined by a call to an RC4-based PRNG. 

The variable q is not used in the general purpose version of [FIPS186-2] (see appendix 6.9 General 
Purpose Random Number Generation). 

XSEEDj is also determined by a call to an RC4-based PRNG for every block output by the [FIPS186-

2] PRNG. 

The variable m is the number of blocks that can be output by the [FIPS186-2] PRNG before a non-
NULL value is passed to XSEEDj. The Windows implementation sets it to the shortest possible value, 
which is 1. 

http://go.microsoft.com/fwlink/?LinkId=90456
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870
http://go.microsoft.com/fwlink/?LinkId=168870


 

142 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

12   Change Tracking 

No table of changes is available. The document is either new or has had no changes since its last 
release. 



 

143 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

13   Index 

A 

Abstract data model 
Joining a Domain by Creating an Account via 

LDAP 104 
Joining a Domain by Creating an Account via 

SAMR 86 
Joining a Domain Using Predefined Account 69 
Locating a Domain Controller 49 
overview 29 
Unjoining a Domain Member 127 

Architecture 
details 41 
Joining a Domain by Creating an Account via 

LDAP 107 
Joining a Domain by Creating an Account via 

SAMR 89 
Joining a Domain Using Predefined Account 72 
Locating a Domain Controller 52 
overview 29 
Unjoining a Domain Member 130 

Assumptions 
Joining a Domain by Creating an Account via 

LDAP 103 
Joining a Domain by Creating an Account via 

SAMR 85 
Joining a Domain Using Predefined Account 68 
Locating a Domain Controller 48 
system 26 
Unjoining a Domain Member 126 

C 

Capability negotiation 
Joining a Domain by Creating an Account via 

LDAP 103 

Joining a Domain by Creating an Account via 
SAMR 85 

Joining a Domain Using Predefined Account 68 
Locating a Domain Controller 49 
Unjoining a Domain Member 126 

Change tracking 142 
Communication 

Joining a Domain by Creating an Account via 
LDAP 107 

Joining a Domain by Creating an Account via 
SAMR 89 

Joining a Domain Using Predefined Account 72 
Locating a Domain Controller 52 
Unjoining a Domain Member 130 

Constraints 
Joining a Domain by Creating an Account via 

LDAP 103 
Joining a Domain by Creating an Account via 

SAMR 86 
Joining a Domain Using Predefined Account 69 
Locating a Domain Controller 49 
Unjoining a Domain Member 126 

D 

Data model – abstract 
Joining a Domain by Creating an Account via 

LDAP 104 
Joining a Domain by Creating an Account via 

SAMR 86 
Joining a Domain Using Predefined Account 69 
Locating a Domain Controller 49 
overview 29 
Unjoining a Domain Member 127 

Details 
architecture 

Joining a Domain by Creating an Account via 
LDAP 110 

Joining a Domain by Creating an Account via 
SAMR 92 

Joining a Domain Using Predefined Account 75 
Locating a Domain Controller 55 
Unjoining a Domain Member 131 

initialization 
Joining a Domain by Creating an Account via 

LDAP 109 
Joining a Domain by Creating an Account via 

SAMR 91 
Joining a Domain Using Predefined Account 74 
Locating a Domain Controller 55 
Unjoining a Domain Member 131 

overview 
Joining a Domain by Creating an Account via 

LDAP 109 
Joining a Domain by Creating an Account via 

SAMR 91 
Joining a Domain Using Predefined Account 74 
Locating a Domain Controller 54 
Unjoining a Domain Member 131 

preconditions 
Joining a Domain by Creating an Account via 

LDAP 109 

Joining a Domain by Creating an Account via 
SAMR 91 

Joining a Domain Using Predefined Account 74 
Locating a Domain Controller 55 
Unjoining a Domain Member 131 

processing rules 
Joining a Domain by Creating an Account via 

LDAP 111 
Joining a Domain by Creating an Account via 

SAMR 93 
Joining a Domain Using Predefined Account 76 
Locating a Domain Controller 57 
Unjoining a Domain Member 132 

E 

Environment 
Joining a Domain by Creating an Account via 

LDAP 102 



 

144 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

Joining a Domain by Creating an Account via 
SAMR 84 

Joining a Domain Using Predefined Account 67 
Locating a Domain Controller 47 
overview 26 
relationships 33 
Unjoining a Domain Member 125 

Error returns 
Joining a Domain by Creating an Account via 

LDAP 105 
Joining a Domain by Creating an Account via 

SAMR 88 
Joining a Domain Using Predefined Account 70 
Locating a Domain Controller 50 
Unjoining a Domain Member 128 

F 

Failure scenarios 

Joining a Domain by Creating an Account via 
LDAP 109 

Joining a Domain by Creating an Account via 
SAMR 91 

Joining a Domain Using Predefined Account 74 
Locating a Domain Controller 54 
system 44 
Unjoining a Domain Member 131 

Foundation 18 

G 

Glossary 11 

I 

Informative references 15 
Introduction 10 

J 

Joining a Domain by Creating an Account via LDAP 
abstract data model 104 
applicability 100 
architecture and communication 107 
assumptions 103 
capability negotiation 103 
constraints 103 
data model - abstract 104 
details 

architecture 110 
overview 109 
preconditions 109 
processing rules 111 

environment 102 
error returns 105 
failure scenarios 109 
initialization 109 
non-timer events 107 
overview 100 
parameters 105 
preconditions 103 
processing rules 108 

purpose 100 
relationships 

black box 102 
overview 102 
system dependencies 103 

returns – status and error 105 
security 122 
stakeholders and interests - overview 100 
status returns 105 
system influences 103 
timers 107 
versioning 103 
white-box relationships 106 

Joining a Domain by Creating an Account via SAMR 
abstract data model 86 
applicability 82 
architecture and communication 89 
assumptions 85 
capability negotiation 85 
constraints 86 
data model - abstract 86 
details 

architecture 92 

initialization 91 
overview 91 
preconditions 91 
processing rule 93 

environment 84 
error returns 88 
failure scenarios 91 
non-timer events 89 
overview 82 
parameters 87 
preconditions 85 
processing rules 90 
purpose 82 
relationships 

black box 84 
overview 84 
system dependencies 85 

returns – status and error 88 
security 99 
stakeholders and interests - overview 82 
status returns 88 
system influences 85 
timers 89 
versioning 85 
white-box relationships 88 

Joining a Domain Using Predefined Account 
abstract data model 69 
applicability 65 
architecture and communication 72 
assumptions 68 
capability negotiation 68 
constraints 69 
data model - abstract 69 
details 

architecture 75 
initialization 74 
overview 74 
preconditions 74 



 

145 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

processing rules 76 
environment 67 
error returns 70 
failure scenarios 74 
non-timer events 72 
overview 65 
parameters 70 
preconditions 68 
processing rules 73 
purpose 65 
relationships 

black box 67 
overview 67 
system dependencies 68 

returns – status and error 70 
security 81 
stakeholders and interests - overview 65 
status returns 70 
system influences 68 
timers 72 
versioning 68 
white-box relationships 71 

L 

List of tasks 16 
Locating a Domain Controller 

abstract data model 49 
applicability 45 
architecture - overview 49 
architecture and communication 52 
assumptions 48 
capability negotiation 49 
constraints 49 
data model - abstract 49 
details 

architecture 55 
initialization 55 
overview 54 
preconditions 55 
processing rule 57 

environment 47 
error returns 50 
failure scenarios 54 
interest summaries 45 
non-timer events 52 
overview 45 
parameters 49 
preconditions 48 
processing rules 53 
purpose 45 
relationships 

black box 48 
overview 48 
system dependencies 48 

returns – status and error 50 
security 64 
stakeholders 45 
stakeholders and interests - overview 45 
status returns 50 
system influences 48 
timers 52 

use cases 45 
versioning 49 
white-box relationships 51 

N 

Non-timer events 
Joining a Domain by Creating an Account via 

LDAP 107 
Joining a Domain by Creating an Account via 

SAMR 89 
Joining a Domain Using Predefined Account 72 
Locating a Domain Controller 52 
Unjoining a Domain Member 130 

Normative references 13 

O 

Overview (synopsis) 16 

P 

Parameters 
Joining a Domain by Creating an Account via 

LDAP 105 
Joining a Domain by Creating an Account via 

SAMR 87 
Joining a Domain Using Predefined Account 70 
Locating a Domain Controller 49 
Unjoining a Domain Member 127 

Preconditions 
Joining a Domain by Creating an Account via 

LDAP 103 
Joining a Domain by Creating an Account via 

SAMR 85 
Joining a Domain Using Predefined Account 68 
Locating a Domain Controller 48 
system 26 
Unjoining a Domain Member 126 

Prerequisites 
background knowledge and system-specific 

concepts 
accounts 22 
domain controllers 22 
domain services 24 
domains 18 
domains and forests 24 

overview 18 
Processing rules 

Joining a Domain by Creating an Account via 
LDAP 108 

Joining a Domain by Creating an Account via 
SAMR 90 

Joining a Domain Using Predefined Account 73 
Locating a Domain Controller 53 
Unjoining a Domain Member 130 

Product behavior 139 

R 

References 
informative 15 



 

146 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

normative 13 
Relationships 

black box 
common 27 
Joining a Domain by Creating an Account via 

LDAP 102 
Joining a Domain by Creating an Account via 

SAMR 84 
Joining a Domain Using Predefined Account 67 
Locating a Domain Controller 48 
Unjoining a Domain Member 125 

Joining a Domain by Creating an Account via 
LDAP - overview 102 

Joining a Domain by Creating an Account via 
SAMR - overview 84 

Joining a Domain Using a Predefined Account - 
overview 67 

Locating a Domain Controller - overview 48 
system dependencies 

high level 28 
Joining a Domain by Creating an Account via 

LDAP 103 
Joining a Domain by Creating an Account via 

SAMR 85 
Joining a Domain Using Predefined Account 68 
Locating a domain controller 48 
Unjoining a Domain Member 126 

Unjoining a Domain Member - overview 125 
Required information 18 
Returns – status and error 

Joining a Domain by Creating an Account via 
LDAP 105 

Joining a Domain by Creating an Account via 
SAMR 88 

Joining a Domain Using Predefined Account 70 
Locating a Domain Controller 50 
Unjoining a Domain Member 128 

S 

Security 
Joining a Domain by Creating an Account via 

LDAP 122 
Joining a Domain by Creating an Account via 

SAMR 99 
Joining a Domain Using Predefined Account 81 
Locating a Domain Controller 64 
tasks - other 138 
Unjoining a Domain Member 137 

Standards assignments 17 
Status returns 

Joining a Domain by Creating an Account via 
LDAP 105 

Joining a Domain by Creating an Account via 
SAMR 88 

Joining a Domain Using Predefined Account 70 
Locating a Domain Controller 50 
Unjoining a Domain Member 128 

System context 26 
System influences 

common 28 

Joining a Domain by Creating an Account via 
LDAP 103 

Joining a Domain by Creating an Account via 
SAMR 85 

Joining a Domain Using Predefined Account 68 
Locating a Domain Controller 48 
Unjoining a Domain Member 126 

T 

Task 
information 26 
list 16 
summary 16 

Timers 
Joining a Domain by Creating an Account via 

LDAP 107 
Joining a Domain by Creating an Account via 

SAMR 89 

Joining a Domain Using Predefined Account 72 
Locating a Domain Controller 52 
Unjoining a Domain Member 130 

Tracking changes 142 

U 

Unjoining a Domain Member 
abstract data model 127 
applicability 123 
architecture and communication 130 
assumptions 126 
capability negotiation 126 
constraints 126 
data model - abstract 127 
details 

architecture 131 
initialization 131 
overview 131 
preconditions 131 
processing rules 132 

environment 125 
error returns 128 
failure scenarios 131 
non-timer events 130 
parameters 127 
preconditions 126 
processing rules 130 
purpose 123 
relationships 

black box 125 
overview 125 
system dependencies 126 

returns – status and error 128 
security 137 
stakeholders and interests - overview 123 
status returns 128 
system influences 126 
timers 130 
versioning 126 
white box relationships 129 



 

147 / 147 

[MS-DISO] — v20140502   
 Domain Interactions System Overview  
 
 Copyright © 2014 Microsoft Corporation.  
 
 Release: Thursday, May 15, 2014  

V 

Versioning 
Joining a Domain by Creating an Account via 

LDAP 103 
Joining a Domain by Creating an Account via 

SAMR 85 
Joining a Domain Using Predefined Account 68 
Locating a Domain Controller 49 
Unjoining a Domain Member 126 

W 

White-box relationships 
common 32 

Joining a Domain by Creating an Account via 
LDAP 106 

Joining a Domain by Creating an Account via 
SAMR 88 

Joining a Domain Using Predefined Account 71 
Locating a Domain Controller 51 
Unjoining a Domain Member 129 


	Contents
	1   Introduction
	1.1   Glossary
	1.2   References
	1.2.1   Normative References
	1.2.2   Informative References


	2   Overview
	2.1   Summary
	2.2   List of Tasks
	2.3   Relevant Standards

	3   Background Knowledge and System-Specific Concepts
	3.1   Domains
	3.1.1   NT-4.0 Style Domain
	3.1.2   AD-Style Domain
	3.1.3   Domain Naming
	3.1.4   Local and Remote Domains
	3.1.4.1   Local Domains
	3.1.4.2   Remote Domains and Domain Controllers
	3.1.4.3   Domain Membership
	3.1.4.4   Effect on Accounts


	3.2   Domain Controllers
	3.2.1   Writable Domain Controller
	3.2.2   Read-Only Domain Controller

	3.3   Accounts
	3.3.1   Account Types
	3.3.2   Account Names

	3.4   Domain Services
	3.5   Domains and Forests

	4   Common Task Information
	4.1   System Context
	4.1.1   System Environment
	4.1.2   System Assumptions and Preconditions
	4.1.2.1   Client
	4.1.2.2   Domain Controller Server


	4.2   Common System Relationships
	4.2.1   Black Box Relationship Diagrams
	4.2.2   Common System Dependencies
	4.2.3   Common System Influences

	4.3   Common System Architecture
	4.3.1   Common Abstract Data Model
	4.3.1.1   Client Data Model
	4.3.1.2   Interaction with the [MS-LSAD] Data Model

	4.3.2   Domain Join State

	4.4   Overview of the Interactions in the System
	4.5   Common Relationships in Domain Client Workstation and Server Roles
	4.5.1   Workstation to Domain Controller
	4.5.2   Server to Domain Controller
	4.5.3   Domain Controller and Domain Client Functional Relationships
	4.5.3.1   Domain Controllers
	4.5.3.1.1   Management Services
	4.5.3.1.2   Identity, Authentication, and Authorization
	4.5.3.1.3   Support Services
	4.5.3.1.4   Remote File Services

	4.5.3.2   Domain Client


	4.6   Common Architectural Details
	4.7   Architectural Details
	4.7.1   Domain Client Architecture
	4.7.1.1   Locator
	4.7.1.2   Time Service
	4.7.1.3   Authentication

	4.7.2   Domain Controller Architecture

	4.8   Common Failure Scenarios

	5   Locating a Domain Controller
	5.1   Task Overview
	5.1.1   Task Purpose
	5.1.2   Task Applicability
	5.1.3   Task Use Cases
	5.1.3.1   Stakeholders and Interests Summary
	5.1.3.2   Supporting Actors and Task Interests Summary
	5.1.3.3   Use Case Diagrams
	5.1.3.4   Locating a Domain Controller — Client Application


	5.2   Task Context
	5.2.1   Task Environment
	5.2.2   Task Relationships
	5.2.2.1   Black Box Relationship Diagrams
	5.2.2.2   Task Dependencies
	5.2.2.3   Task Influences

	5.2.3   Task Assumptions and Preconditions
	5.2.4   Task Versioning and Capability Negotiation

	5.3   Task Architecture
	5.3.1   Task Architectural Constraints
	5.3.2   Task Abstract Data Model
	5.3.3   Task Abstract Parameters
	5.3.4   Task Abstract Results
	5.3.5   White-Box Relationships
	5.3.6   Task Events
	5.3.6.1   Task Timers
	5.3.6.2   Task Non-Timer Events

	5.3.7   Task Architecture and Communication
	5.3.8   Task Processing Rules
	5.3.9   Task Failure Scenarios

	5.4   Task Details
	5.4.1   Task Precondition Details
	5.4.2   Task Initialization of External Entities
	5.4.3   Task Event Details
	5.4.3.1   Task Timer Details
	5.4.3.2   Task Non-Timer Event Details

	5.4.4   Task Architectural Details
	5.4.4.1   Location Based on DNS Domain Name
	5.4.4.2   Location Based on NetBIOS Domain Name

	5.4.5   Task Processing Rule Details
	5.4.5.1   Determine DNS Domain Name of the Domain
	5.4.5.2   Identify List of Candidate Domain Controllers Based on DNS Information
	5.4.5.3   Ping the Candidate Domain Controllers for "Liveness" and Capability Verification Using LDAP Ping Mechanism
	5.4.5.4   Determine NetBIOS Name of the Domain
	5.4.5.5   Location of Domain Controllers Based on NetBIOS Group Names
	5.4.5.6   Returning Results to the Task Initiator and Updating the Client ADM


	5.5   Task Security

	6   Joining a Domain Using a Predefined Account
	6.1   Task Overview
	6.1.1   Task Purpose
	6.1.2   Task Applicability
	6.1.3   Task Use Cases
	6.1.3.1   Stakeholders and Interests Summary
	6.1.3.2   Supporting Actors and Task Interests Summary
	6.1.3.3   Use Case Diagrams
	6.1.3.4   Join a Client Computer to a Domain Using a Predefined Account — Client Computer


	6.2   Task Context
	6.2.1   Task Environment
	6.2.2   Task Relationships
	6.2.2.1   Black Box Relationship Diagram
	6.2.2.2   Task Dependencies
	6.2.2.3   Task Influences

	6.2.3   Task Assumptions and Preconditions
	6.2.4   Task Versioning and Capability Negotiation

	6.3   Task Architecture
	6.3.1   Task Architectural Constraints
	6.3.2   Task Abstract Data Model
	6.3.3   Task Abstract Parameters
	6.3.4   Task Abstract Results
	6.3.5   White-Box Relationships
	6.3.6   Task Events
	6.3.6.1   Task Timers
	6.3.6.2   Task Non-Timer Events

	6.3.7   Task Architecture and Communication
	6.3.8   Task Processing Rules
	6.3.9   Task Failure Scenarios

	6.4   Task Details
	6.4.1   Task Precondition Details
	6.4.2   Task Initialization of External Entities
	6.4.3   Task Event Details
	6.4.3.1   Task Timer Details
	6.4.3.2   Task Non-Timer Event Details

	6.4.4   Task Architectural Details
	6.4.5   Task Processing Rule Details
	6.4.5.1   Locate a Domain Controller
	6.4.5.2   Establish SMB/CIFS Session to the Domain Controller
	6.4.5.3   Retrieve Domain Information from the Domain Controller
	6.4.5.4   Validate the Predefined Account Credentials
	6.4.5.5   Enumerate Domain Trusts
	6.4.5.6   Update Local State
	6.4.5.7   Close Connections
	6.4.5.8   Reinitialize Local Protocols


	6.5   Task Security

	7   Joining a Domain by Creating an Account via SAMR
	7.1   Task Overview
	7.1.1   Task Purpose
	7.1.2   Task Applicability
	7.1.3   Task Use Cases
	7.1.3.1   Stakeholders and Interests Summary
	7.1.3.2   Supporting Actors and Task Interests Summary
	7.1.3.3   Use Case Diagrams
	7.1.3.4   Join a Client Computer to a Domain by Creating an Account via SAMR — Client Computer


	7.2   Task Context
	7.2.1   Task Environment
	7.2.2   Task Relationships
	7.2.2.1   Black Box Relationship Diagrams
	7.2.2.2   Task Dependencies
	7.2.2.3   Task Influences

	7.2.3   Task Assumptions and Preconditions
	7.2.4   Task Versioning and Capability Negotiation

	7.3   Task Architecture
	7.3.1   Task Architectural Constraints
	7.3.2   Task Abstract Data Model
	7.3.3   Task Abstract Parameters
	7.3.4   Task Abstract Results
	7.3.5   White-Box Relationships
	7.3.6   Task Events
	7.3.6.1   Task Timers
	7.3.6.2   Task Non-Timer Events

	7.3.7   Task Architecture and Communication
	7.3.8   Task Processing Rules
	7.3.9   Task Failure Scenarios

	7.4   Task Details
	7.4.1   Task Precondition Details
	7.4.2   Task Initialization of External Entities
	7.4.3   Task Event Details
	7.4.3.1   Task Timer Details
	7.4.3.2   Task Non-Timer Event Details

	7.4.4   Task Architectural Details
	7.4.5   Task Processing Rule Details
	7.4.5.1   Locate a Domain Controller
	7.4.5.2   Establish Authenticated SMB Session
	7.4.5.3   Retrieve Domain Information
	7.4.5.4   Create Client Computer Account
	7.4.5.5   Update Client Computer Account
	7.4.5.6   Enumerate Domain Trusts
	7.4.5.7   Update Local State
	7.4.5.8   Disable New Computer Account on Domain Controller
	7.4.5.9   Close Connections
	7.4.5.10   Reinitialize Local Protocols


	7.5   Task Security

	8   Joining a Domain by Creating an Account via LDAP
	8.1   Task Overview
	8.1.1   Task Purpose
	8.1.2   Task Applicability
	8.1.3   Task Use Cases
	8.1.3.1   Stakeholders and Interests Summary
	8.1.3.2   Supporting Actors and Task Interests Summary
	8.1.3.3   Use Case Diagrams
	8.1.3.4   Join a Client Computer to a Domain by Creating an Account via LDAP — Client Computer


	8.2   Task Context
	8.2.1   Task Environment
	8.2.2   Task Relationships
	8.2.2.1   Black Box Relationship Diagrams
	8.2.2.2   Task Dependencies
	8.2.2.3   Task Influences

	8.2.3   Task Assumptions and Preconditions
	8.2.4   Task Versioning and Capability Negotiation

	8.3   Task Architecture
	8.3.1   Task Architectural Constraints
	8.3.2   Task Abstract Data Model
	8.3.3   Task Abstract Parameters
	8.3.4   Task Abstract Results
	8.3.5   White-Box Relationships
	8.3.6   Task Events
	8.3.6.1   Task Timers
	8.3.6.2   Task Non-Timer Events

	8.3.7   Task Architecture and Communication
	8.3.8   Task Processing Rules
	8.3.9   Task Failure Scenarios

	8.4   Task Details
	8.4.1   Task Precondition Details
	8.4.2   Task Initialization of External Entities
	8.4.3   Task Event Details
	8.4.3.1   Task Timer Details
	8.4.3.2   Task Non-Timer Event Details

	8.4.4   Task Architectural Details
	8.4.5   Task Processing Rule Details
	8.4.5.1   Locate a Domain Controller
	8.4.5.2   Establish Authenticated LDAP Connection
	8.4.5.3   Retrieve Domain Information
	8.4.5.4   Create Client Computer Account on the Domain Controller
	8.4.5.5   Enumerate Domain Trusts
	8.4.5.6   Update Local State
	8.4.5.7   Rollback Changes on Domain Controller
	8.4.5.8   Close Connections
	8.4.5.9   Reinitialize Local Protocols


	8.5   Task Security

	9   Unjoining a Domain Member
	9.1   Task Overview
	9.1.1   Task Purpose
	9.1.2   Task Applicability
	9.1.3   Task Use Cases
	9.1.3.1   Stakeholders and Interests Summary
	9.1.3.2   Supporting Actors and Task Interests Summary
	9.1.3.3   Use Case Diagram
	9.1.3.4   Unjoining a Domain Member - Client Computer


	9.2   Task Context
	9.2.1   Task Environment
	9.2.2   Task Relationships
	9.2.2.1   Black Box Relationship Diagrams
	9.2.2.2   Task Dependencies
	9.2.2.3   Task Influences

	9.2.3   Task Assumptions and Preconditions
	9.2.4   Task Versioning and Capability Negotiation

	9.3   Task Architecture
	9.3.1   Task Architectural Constraints
	9.3.2   Task Abstract Data Model
	9.3.3   Task Abstract Parameters
	9.3.4   Task Abstract Results
	9.3.5   White-Box Relationships
	9.3.6   Task Events
	9.3.6.1   Task Timers
	9.3.6.2   Task Non-Timer Events

	9.3.7   Task Architecture and Communication
	9.3.8   Task Processing Rules
	9.3.9   Task Failure Scenarios

	9.4   Task Details
	9.4.1   Task Precondition Details
	9.4.2   Task Initialization of External Entities
	9.4.3   Task Event Details
	9.4.3.1   Task Timer Details
	9.4.3.2   Task Non-Timer Event Details

	9.4.4   Task Architectural Details
	9.4.5   Task Processing Rule Details
	9.4.5.1   Locate a Domain Controller
	9.4.5.2   Establish SMB Connection
	9.4.5.3   Disable Computer Account
	9.4.5.4   Update Local State
	9.4.5.5   Close Connections
	9.4.5.6   Reinitialize Local Protocols


	9.5   Task Security

	10   Security
	10.1   Untrusted Data
	10.2   Authentication

	11   Appendix A: Product Behavior
	12   Change Tracking
	13   Index

